Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 349(6254): 1330-4, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26383950

RESUMEN

The interface between minerals and aqueous solutions hosts globally important biogeochemical processes such as the growth and dissolution of carbonate minerals. Understanding such processes requires spatially and temporally resolved observations and experimental controls that precisely manipulate the interfacial thermodynamic state. Using the intense radiation fields of a focused synchrotron x-ray beam, we drove dissolution at the calcite/water interface and simultaneously probed the dynamics of the propagating reaction fronts using surface x-ray microscopy. Evolving surface structures were controlled by the time-dependent solution composition, as characterized by a kinetic reaction model. At extreme disequilibria, we observed the onset of reaction front instabilities with velocities of > 30 nanometers per second. These instabilities serve as a signature of transport-limited dissolution of calcite under extreme disequilibrium.

2.
Environ Sci Technol ; 48(16): 9263-9, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25007415

RESUMEN

Lead (Pb) is a common environmental pollutant, and its transport in surface waters and groundwater is controlled in part by sorption and precipitation reactions at mineral surfaces. Using in situ specular and resonant anomalous X-ray reflectivity measurements, we investigated the interaction of the calcite (104) surface with a dilute Pb- and EDTA-bearing solution that is slightly undersaturated with respect to calcite. The X-ray results reveal Pb coherently substituting for Ca in the near-surface layers of strained calcite with Pb/(Pb + Ca) atom fractions as high as 0.28 in the outermost layer. The larger ionic radius of Pb(2+) relative to Ca(2+) is accommodated in calcite by vertical displacements of Pb relative to the Ca site. In situ atomic force microscopy images obtained during the reaction suggest that Pb incorporation below the surface occurs after initial dissolution followed by regrowth of a strained epitaxial Pb-rich calcite solid-solution at the calcite (104)-water interface. This process could produce a widespread host phase for Pb in groundwater aquifers and soil pore fluids.


Asunto(s)
Carbonato de Calcio/química , Plomo/química , Contaminantes Químicos del Agua/química , Ácido Edético/química , Soluciones , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...