Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Direct ; 5(6): e00330, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34222769

RESUMEN

Most members of basic leucine zipper (bZIP) transcription factor (TF) subgroup A play important roles as positive effectors in abscisic acid (ABA) signaling during germination and/or in vegetative stress responses. In multiple plant species, one member, ABA insensitive 5 (ABI5), is a major TF that promotes seed maturation and blocks early seeding growth in response to ABA. Other members, referred to as either ABRE-binding factors (ABFs), ABRE-binding proteins (AREBs), or D3 protein-binding factors (DPBFs), are implicated as major players in stress responses during vegetative growth. Studies on the proteolytic regulation of ABI5, ABF1, and ABF3 in Arabidopsis thaliana have shown that the proteins have moderate degradation rates and accumulate in the presence of the proteasome inhibitor MG132. Exogenous ABA slows their degradation and the ubiquitin E3 ligase called KEEP ON GOING (KEG) is important for their degradation. However, there are some reported differences in degradation among subgroup A members. The conserved C-terminal sequences (referred to as the C4 region) enhance degradation of ABI5 but stabilize ABF1 and ABF3. To better understand the proteolytic regulation of the ABI5/ABFs and determine whether there are differences between vegetative ABFs and ABI5, we studied the degradation of an additional family member, ABF2, and compared its in vitro degradation to that of ABI5. As previously seen for ABI5, ABF1, and ABF3, epitope-tagged constitutively expressed ABF2 degrades in seedlings treated with cycloheximide and is stabilized following treatment with the proteasome inhibitor MG132. Tagged ABF2 protein accumulates when seedlings are treated with ABA, but its mRNA levels do not increase, suggesting that the protein is stabilized in the presence of ABA. ABF2 is also an in vitro ubiquitination substrate of the E3 ligase KEG and recombinant ABF2 is stable in keg lysates. ABF2 with a C4 deletion degrades more quickly in vitro than full-length ABF2, as previously observed for ABF1 and ABF3, suggesting that the conserved C4 region contributes to its stability. In contrast to ABF2 and consistent with previously published work, ABI5 with C terminal deletions including an analogous C4 deletion is stabilized in vitro compared to full length ABI5. In vivo expression of an ABF1 C4 deletion protein appears to have reduced activity compared to equivalent levels of full length ABF1. Additional group A family members show similar proteolytic regulation by MG132 and ABA. Altogether, these results together with other work on ABI5 regulation suggest that the vegetative ABFs share proteolytic regulatory mechanisms that are not completely shared with ABI5.

2.
Front Plant Sci ; 12: 641849, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796126

RESUMEN

The ubiquitin system is essential for multiple hormone signaling pathways in plants. Here, we show that the Arabidopsis thaliana E3 ligase BRIZ, a heteromeric ligase that consists minimally of BRIZ1 and BRIZ2 proteins, functions in abscisic acid (ABA) signaling or response. briz1 and briz2 homozygous mutants either fail to germinate or emerge later than wild-type seedlings, with little cotyledon expansion or root elongation and no visible greening. Viability staining indicates that briz1 and briz2 embryos are alive but growth-arrested. Germination of briz mutants is improved by addition of the carotenoid biosynthetic inhibitor fluridone or gibberellic acid (GA3), and briz mutants have improved development in backgrounds deficient in ABA synthesis (gin1-3/aba2) or signaling (abi5-7). Endogenous ABA is not higher in briz2 seeds compared to wild-type seeds, and exogenous ABA does not affect BRIZ mRNAs in imbibed seeds. These results indicate that briz embryos are hypersensitive to ABA and that under normal growth conditions, BRIZ acts to suppress ABA signaling or response. ABA signaling and sugar signaling are linked, and we found that briz1 and briz2 mutants excised from seed coats are hypersensitive to sucrose. Although briz single mutants do not grow to maturity, we were able to generate mature briz2-3 abi5-7 double mutant plants that produced seeds. These seeds are more sensitive to exogenous sugar and are larger than seeds from sibling abi5-7 BRIZ2/briz2-3 plants, suggesting that BRIZ has a parental effect on seed development. From these data, we propose a model in which the BRIZ E3 ligase suppresses ABA responses during seed maturation and germination and early seedling establishment.

3.
Plant Direct ; 5(4): e00316, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33870032

RESUMEN

Population growth and climate change will impact food security and potentially exacerbate the environmental toll that agriculture has taken on our planet. These existential concerns demand that a passionate, interdisciplinary, and diverse community of plant science professionals is trained during the 21st century. Furthermore, societal trends that question the importance of science and expert knowledge highlight the need to better communicate the value of rigorous fundamental scientific exploration. Engaging students and the general public in the wonder of plants, and science in general, requires renewed efforts that take advantage of advances in technology and new models of funding and knowledge dissemination. In November 2018, funded by the National Science Foundation through the Arabidopsis Research and Training for the 21st century (ART 21) research coordination network, a symposium and workshop were held that included a diverse panel of students, scientists, educators, and administrators from across the US. The purpose of the workshop was to re-envision how outreach programs are funded, evaluated, acknowledged, and shared within the plant science community. One key objective was to generate a roadmap for future efforts. We hope that this document will serve as such, by providing a comprehensive resource for students and young faculty interested in developing effective outreach programs. We also anticipate that this document will guide the formation of community partnerships to scale up currently successful outreach programs, and lead to the design of future programs that effectively engage with a more diverse student body and citizenry.

4.
J Biol Chem ; 295(40): 13940-13955, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32796036

RESUMEN

In a single vascular plant species, the ubiquitin system consists of thousands of different proteins involved in attaching ubiquitin to substrates, recognizing or processing ubiquitinated proteins, or constituting or regulating the 26S proteasome. The ubiquitin system affects plant health, reproduction, and responses to the environment, processes that impact important agronomic traits. Here we summarize three agronomic traits influenced by ubiquitination: induction of flowering, seed size, and pathogen responses. Specifically, we review how the ubiquitin system affects expression of genes or abundance of proteins important for determining when a plant flowers (focusing on FLOWERING LOCUS C, FRIGIDA, and CONSTANS), highlight some recent studies on how seed size is affected by the ubiquitin system, and discuss how the ubiquitin system affects proteins involved in pathogen or effector recognition with details of recent studies on FLAGELLIN SENSING 2 and SUPPRESSOR OF NPR CONSTITUTIVE 1, respectively, as examples. Finally, we discuss the effects of pathogen-derived proteins on plant host ubiquitin system proteins. Further understanding of the molecular basis of the above processes could identify possible genes for modification or selection for crop improvement.


Asunto(s)
Productos Agrícolas , Proteínas de Plantas , Carácter Cuantitativo Heredable , Ubiquitina , Ubiquitinación/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(13): 6463-6472, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850516

RESUMEN

Auxin phytohormones control most aspects of plant development through a complex and interconnected signaling network. In the presence of auxin, AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors are targeted for degradation by the SKP1-CULLIN1-F-BOX (SCF) ubiquitin-protein ligases containing TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). CULLIN1-neddylation is required for SCFTIR1/AFB functionality, as exemplified by mutants deficient in the NEDD8-activating enzyme subunit AUXIN-RESISTANT 1 (AXR1). Here, we report a chemical biology screen that identifies small molecules requiring AXR1 to modulate plant development. We selected four molecules of interest, RubNeddin 1 to 4 (RN1 to -4), among which RN3 and RN4 trigger selective auxin responses at transcriptional, biochemical, and morphological levels. This selective activity is explained by their ability to consistently promote the interaction between TIR1 and a specific subset of AUX/IAA proteins, stimulating the degradation of particular AUX/IAA combinations. Finally, we performed a genetic screen using RN4, the RN with the greatest potential for dissecting auxin perception, which revealed that the chromatin remodeling ATPase BRAHMA is implicated in auxin-mediated apical hook development. These results demonstrate the power of selective auxin agonists to dissect auxin perception for plant developmental functions, as well as offering opportunities to discover new molecular players involved in auxin responses.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta/fisiología , Proteolisis , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteína NEDD8/genética , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Receptores de Superficie Celular/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Plantones/metabolismo , Transducción de Señal , Transcripción Genética/efectos de los fármacos
6.
BMC Plant Biol ; 17(1): 83, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28441933

RESUMEN

BACKGROUND: Fructose is an abundant sugar in plants as it is a breakdown product of both major sucrose-cleaving enzymes. To enter metabolism, fructose is phosphorylated by a fructokinase (FRK). Known FRKs are members of a diverse family of carbohydrate/purine kinases known as the phosphofructokinase B (pfkB) family. The complete complement of active fructokinases has not been reported for any plant species. RESULTS: Protein sequence analysis of the 22 Arabidopsis thaliana pfkB members identified eight highly related predicted proteins, including one with previously demonstrated FRK activity. For one, At1g50390, the predicted open reading frame is half the size of active FRKs, and only incompletely spliced RNAs were identified, which led to a premature stop codon, both indicating that this gene does not produce active FRK. The remaining seven proteins were expressed in E. coli and phosphorylated fructose specifically in vitro leading us to propose a unifying nomenclature (FRK1-7). Substrate inhibition was observed for fructose in all FRKs except FRK1. Fructose binding was on the same order of magnitude for FRK1-6, between 260 and 480 µM. FRK7 was an outlier with a fructose Km of 12 µM. ATP binding was similar for all FRKs and ranged between 52 and 280 µM. YFP-tagged AtFRKs were cytosolic, except plastidic FRK3. T-DNA alleles with non-detectable wild-type RNAs in five of the seven active FRK genes produced no overt phenotype. We extended our sequence comparisons to include putative FRKs encoded in other plant sequenced genomes. We observed that different subgroups expanded subsequent to speciation. CONCLUSIONS: Arabidopsis thaliana as well as all other plant species analyzed contain multiple copies of genes encoding FRK activity. Sequence comparisons among multiple species identified a minimal set of three distinct FRKs present on all species investigated including a plastid-localized form. The selective expansion of specific isozymes results in differences in FRK gene number among species. AtFRKs exhibit substrate inhibition, typical of their mammalian counterparts with the single AtFRK1 lacking this property, suggesting it may have a distinct in vivo role. Results presented here provide a starting point for the engineering of specific FRKs to affect biomass production.


Asunto(s)
Arabidopsis/genética , Fructoquinasas/genética , Genes de Plantas , Proteínas de Plantas/genética , Arabidopsis/enzimología , ADN Bacteriano , Fructoquinasas/metabolismo , Fructosa/metabolismo , Genoma de Planta , Isoenzimas/genética , Familia de Multigenes , Mutagénesis Insercional , Fosforilación , Proteínas de Plantas/metabolismo , Especificidad de la Especie , Especificidad por Sustrato
7.
Biochem J ; 474(11): 1789-1801, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28377494

RESUMEN

The Arabidopsis thaliana fructokinase-like proteins FLN1 and FLN2 are required for the differentiation of plastids into photosynthetically competent chloroplasts. However, their specific roles are unknown. FLN1 and FLN2 localize in a multisubunit prokaryotic-type polymerase (plastid-encoded RNA polymerase) complex that transcribes genes encoding components of photosynthesis-related assemblies. Despite sequence identity with fructokinases, which are members of the pfkB (phosphofructokinase B) family of enzymes, kinase activity of FLN1 and FLN2 has not been demonstrated. Homology modeling using pfkB X-ray structures, sequence comparisons, and mutational analyses suggests that FLN proteins may bind their substrates differently from other pfkB proteins. We provide evidence that purified recombinant FLN1 undergoes an ATP-mediated change in binding affinity with both itself and recombinant FLN2. The ATP-mediated change in the affinity of FLN1 for FLN2 is not affected by mutations in conserved active-site residues known to affect catalysis in active pfkB enzymes. In contrast, recombinant FLN2 hetero-oligomerizes independently of ATP concentration. At ATP concentrations that promote FLN1 homomeric interactions, the FLN1-FLN2 hetero-oligomer is the dominant form in vitro We further present evidence that FLN1 associates with a large protein complex in chloroplasts independently of ATP. Given that ATP levels fluctuate between light-dark cycles in the 1-5 mM range, we propose that changes in FLN1 and FLN2 interactions are biologically meaningful.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/enzimología , Modelos Moleculares , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dominio Catalítico , Cloroplastos/metabolismo , Secuencia Conservada , Bases de Datos de Proteínas , Ligandos , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Filogenia , Conformación Proteica , Multimerización de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína
8.
J Biol Chem ; 292(9): 3827-3840, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28100770

RESUMEN

Intercellular amino acid transport is essential for the growth of all multicellular organisms, and its dysregulation is implicated in developmental disorders. By an unknown mechanism, amino acid efflux is stimulated in plants by overexpression of a membrane-localized protein (GLUTAMINE DUMPER 1 (GDU1)) that requires a ubiquitin ligase (LOSS OF GDU 2 (LOG2). Here we further explore the physiological consequences of the interaction between these two proteins. LOG2 ubiquitin ligase activity is necessary for GDU1-dependent tolerance to exogenous amino acids, and LOG2 self-ubiquitination was markedly stimulated by the GDU1 cytosolic domain, suggesting that GDU1 functions as an adaptor or coactivator of amino acid exporter(s). However, other consequences more typical of a ligase-substrate relationship are observed: disruption of the LOG2 gene increased the in vivo half-life of GDU1, mass spectrometry confirmed that LOG2 ubiquitinates GDU1 at cytosolic lysines, and GDU1 protein levels decreased upon co-expression with active, but not enzymatically inactive LOG2. Altogether these data indicate LOG2 negatively regulates GDU1 protein accumulation by a mechanism dependent upon cytosolic GDU1 lysines. Although GDU1-lysine substituted protein exhibited diminished in vivo ubiquitination, overexpression of GDU1 lysine mutants still conferred amino acid tolerance in a LOG2-dependent manner, consistent with GDU1 being both a substrate and facilitator of LOG2 function. From these data, we offer a model in which GDU1 activates LOG2 to stimulate amino acid export, a process that could be negatively regulated by GDU1 ubiquitination and LOG2 self-ubiquitination.


Asunto(s)
Aminoácidos/química , Proteínas de Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatografía Liquida , Cruzamientos Genéticos , Citosol/metabolismo , Retroalimentación Fisiológica , Homeostasis , Lisina/química , Fenotipo , Dominios Proteicos , Espectrometría de Masas en Tándem , Nicotiana/genética , Ubiquitinación
9.
J Biol Chem ; 291(43): 22572-22582, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27601466

RESUMEN

Ribose can be used for energy or as a component of several important biomolecules, but for it to be used in either capacity it must first be phosphorylated by ribokinase (RBSK). RBSK proteins are part of the phosphofructokinase-B (pfkB) family of carbohydrate kinases. Sequence comparisons of pfkB proteins from the model plant Arabidopsis thaliana with the human and Escherichia coli RBSK identified a single candidate RBSK, At1g17160 (AtRBSK). AtRBSK is more similar to predicted RBSKs from other plant species and known mammalian and prokaryotic RBSK than to all other PfkB proteins in Arabidopsis AtRBSK contains a predicted chloroplast transit peptide, and we confirmed plastid localization using AtRBSK fused to YFP. Structure prediction software verified that the AtRBSK sequence mapped onto a known RBSK structure. Kinetic parameters of purified recombinant AtRBSK were determined to be Kmribose = 150 µm ± 17 µm, KmATP = 45 µm ± 5.6 µm, and kcat = 2.0 s-1 Substrate inhibition was observed for AtRBSK (KiATP = 2.44 mm ± 0.36 mm), as has been demonstrated for other RBSK proteins. Ribose accumulated in Arabidopsis plants lacking AtRBSK. Such plants grew normally unless media was supplemented with ribose, which led to chlorosis and growth inhibition. Both chlorosis and ribose accumulation were abolished upon the introduction of a transgene expressing AtRBSK-MYC, demonstrating that the loss of protein is responsible for ribose hypersensitivity. Ribose accumulation in plants lacking AtRBSK was reduced in plants also deficient in the nucleoside ribohydrolase NSH1, linking AtRBSK activity to nucleoside metabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Nucleósidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ribosa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Nucleósidos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ribosa/genética
10.
Plant Physiol ; 169(2): 1405-17, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26320228

RESUMEN

Jasmonate (JA) signaling in plants is mediated by the JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of several transcription factors regulating JA-inducible gene expression. The hormone JA-isoleucine triggers the interaction of JAZ repressor proteins with the F-box protein CORONATINE INSENSITIVE1 (COI1), part of an S-phase kinase-associated protein1/Cullin1/F-box protein COI1 (SCF(COI1)) E3 ubiquitin ligase complex, and their degradation by the 26S proteasome. In Arabidopsis (Arabidopsis thaliana), the JAZ family consists of 13 members. The level of redundancy or specificity among these members is currently not well understood. Here, we characterized JAZ12, encoded by a highly expressed JAZ gene. JAZ12 interacted with the transcription factors MYC2, MYC3, and MYC4 in vivo and repressed MYC2 activity. Using tandem affinity purification, we found JAZ12 to interact with SCF(COI1) components, matching with observed in vivo ubiquitination and with rapid degradation after treatment with JA. In contrast to the other JAZ proteins, JAZ12 also interacted directly with the E3 RING ligase KEEP ON GOING (KEG), a known repressor of the ABSCISIC ACID INSENSITIVE5 transcription factor in abscisic acid signaling. To study the functional role of this interaction, we circumvented the lethality of keg loss-of-function mutants by silencing KEG using an artificial microRNA approach. Abscisic acid treatment promoted JAZ12 degradation, and KEG knockdown led to a decrease in JAZ12 protein levels. Correspondingly, KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our results provide additional evidence for KEG as an important factor in plant hormone signaling and a positive regulator of JAZ12 stability.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Mutación , Plantas Modificadas Genéticamente , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Nicotiana/genética , Ubiquitina-Proteína Ligasas/genética
11.
Plant Physiol ; 168(2): 708-20, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25888615

RESUMEN

Although many ubiquitin-proteasome substrates have been characterized in plants, very little is known about the corresponding ubiquitin attachment(s) underlying regulated proteolysis. Current dogma asserts that ubiquitin is typically covalently attached to a substrate through an isopeptide bond between the ubiquitin carboxy terminus and a substrate lysyl amino group. However, nonlysine (non-Lys) ubiquitin attachment has been observed in other eukaryotes, including the N terminus, cysteine, and serine/threonine modification. Here, we investigate site(s) of ubiquitin attachment on indole-3-acetic acid1 (IAA1), a short-lived Arabidopsis (Arabidopsis thaliana) Auxin/indole-3-acetic acid (Aux/IAA) family member. Most Aux/IAA proteins function as negative regulators of auxin responses and are targeted for degradation after ubiquitination by the ubiquitin ligase SCF(TIR1/AFB) (for S-Phase Kinase-Associated Protein1, Cullin, F-box [SCF] with Transport Inhibitor Response1 [TIR1]/Auxin Signaling F-box [AFB]) by an interaction directly facilitated by auxin. Surprisingly, using a Histidine-Hemaglutinin (HIS(6x)-HA(3x)) epitope-tagged version expressed in vivo, Lys-less IAA1 was ubiquitinated and rapidly degraded in vivo. Lys-substituted versions of IAA1 localized to the nucleus as Yellow Fluorescent Protein fusions and interacted with both TIR1 and IAA7 in yeast (Saccharomyces cerevisiae) two-hybrid experiments, indicating that these proteins were functional. Ubiquitination on both HIS(6x)-HA(3x)-IAA1 and Lys-less HIS(6x)-HA(3x)-IAA1 proteins was sensitive to sodium hydroxide treatment, indicative of ubiquitin oxyester formation on serine or threonine residues. Additionally, base-resistant forms of ubiquitinated IAA1 were observed for HIS(6x)-HA(3x)-IAA1, suggesting additional lysyl-linked ubiquitin on this protein. Characterization of other Aux/IAA proteins showed that they have diverse degradation rates, adding additional complexity to auxin signaling. Altogether, these data indicate that Aux/IAA family members have protein-specific degradation rates and that ubiquitination of Aux/IAAs can occur on multiple types of amino residues to promote rapid auxin-mediated degradation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Ácidos Indolacéticos/metabolismo , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Arabidopsis/química , Núcleo Celular/metabolismo , Secuencia Conservada , Proteínas de Unión al ADN/química , Luciferasas/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/química , Unión Proteica , Ubiquitina/metabolismo , Ubiquitinación
12.
Plant Signal Behav ; 9(10): e972207, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482814

RESUMEN

Many plant growth and developmental processes are modulated by the hormone auxin. Auxin-modulated proteolysis of Aux/IAAs, a family of transcriptional repressors, represents a major mode of auxin action. Auxin facilitates the interaction of Aux/IAAs with TIR1/AFB F-box proteins, promoting their ubiquitination by the SCF(TIR1/AFB) ubiquitin E3 ligase leading to subsequent degradation by the 26S proteasome. To identify new genes regulating Aux/IAA proteolysis in Arabidopsis thaliana, we took a genetic approach, identifying individuals with altered degradation of an IAA1-luciferase fusion protein (IAA1-LUC). A mutant with 2-fold slower IAA1-LUC degradation rate compared with wild-type was isolated. Positional cloning identified the mutant as an allele of TOPOISOMERASE6B, named top6b-7. TOP6B encodes a subunit of a plant and archea-specific enzyme regulating endoreduplication, DNA damage repair and transcription in plants. T-DNA insertion alleles (top6b-8 and top6b-9) were also analyzed. top6b-7 seedlings are less sensitive to exogenous auxin than wild-type siblings in primary root growth assays, and experiments with DR5:GUS. Additionally, top6b-7 seedlings have a 40% reduction in the amount of endogenous IAA. These data suggest that increased IAA1-LUC half-life in top6b-7 probably results from a combination of both lower endogenous IAA levels and reduced sensitivity to auxin.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Pruebas Genéticas , Ácidos Indolacéticos/metabolismo , Mutación/genética , Proteínas Nucleares/metabolismo , Proteolisis , Alelos , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Mapeo Cromosómico , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Glucuronidasa/metabolismo , Luciferasas/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Proteínas Recombinantes de Fusión
13.
Arabidopsis Book ; 12: e0174, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25320573

RESUMEN

The protein ubiquitin is a covalent modifier of proteins, including itself. The ubiquitin system encompasses the enzymes required for catalysing attachment of ubiquitin to substrates as well as proteins that bind to ubiquitinated proteins leading them to their final fate. Also included are activities that remove ubiquitin independent of, or in concert with, proteolysis of the substrate, either by the proteasome or proteases in the vacuole. In addition to ubiquitin encoded by a family of fusion proteins, there are proteins with ubiquitin-like domains, likely forming ubiquitin's ß-grasp fold, but incapable of covalent modification. However, they serve as protein-protein interaction platforms within the ubiquitin system. Multi-gene families encode all of these types of activities. Within the ubiquitination machinery "half" of the ubiquitin system are redundant, partially redundant, and unique components affecting diverse developmental and environmental responses in plants. Notably, multiple aspects of biotic and abiotic stress responses require, or are modulated by, ubiquitination. Finally, aspects of the ubiquitin system have broad utility: as components to enhance gene expression or to regulate protein abundance. This review focuses on the ubiquitination machinery: ubiquitin, unique aspects about the synthesis of ubiquitin and organization of its gene family, ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases, or E3s. Given the large number of E3s in Arabidopsis this review covers the U box, HECT and RING type E3s, with the exception of the cullin-based E3s.

14.
Plant Cell ; 25(8): 3039-51, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23995086

RESUMEN

Fe is an essential micronutrient for plant growth and development; plants have developed sophisticated strategies to acquire ferric Fe from the soil. Nongraminaceous plants acquire Fe by a reduction-based mechanism, and graminaceous plants use a chelation-based mechanism. In Arabidopsis thaliana, which uses the reduction-based method, iron-regulated transporter1 (IRT1) functions as the most important transporter for ferrous Fe uptake. Rapid and constitutive degradation of IRT1 allows plants to quickly respond to changing conditions to maintain Fe homeostasis. IRT1 degradation involves ubiquitination. To identify the specific E3 ubiquitin ligases involved in IRT1 degradation, we screened a set of insertional mutants in RING-type E3 ligases and identified a mutant that showed delayed degradation of IRT1 and loss of IRT1-ubiquitin complexes. The corresponding gene was designated IRT1 degradation factor1 (IDF1). Evidence of direct interaction between IDF1 and IRT1 in the plasma membrane supported the role of IDF1 in IRT1 degradation. IRT1 accumulation was reduced when coexpressed with IDF1 in yeast or Xenopus laevis oocytes. IDF1 function was RING domain dependent. The idf1 mutants showed increased tolerance to Fe deficiency, resulting from increased IRT1 levels. This evidence indicates that IDF1 directly regulates IRT1 degradation through its RING-type E3 ligase activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas , Semivida , Péptidos y Proteínas de Señalización Intracelular , Deficiencias de Hierro , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitinación , Xenopus laevis
15.
FEBS Lett ; 587(21): 3400-5, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24036454

RESUMEN

Plant LOSS OF GDU 2 (LOG2) and Mammalian Mahogunin Ring Finger 1 (MGRN1) proteins are RING-type E3 ligases sharing similarity N-terminal to the RING domain. Deletion of this region disrupts the interaction of LOG2 with the plant membrane protein GLUTAMINE DUMPER1 (GDU1). Phylogenetic analysis identified two clades of LOG2/MGRN1-like proteins in vertebrates and plants. The ability of MGRN1 to functionally replace LOG2 was tested. MGRN1 ubiquitylates GDU1 in vitro and can partially substitute for LOG2 in the plant, partially restoring amino acid resistance to a GDU1-myc over-expression, log2-2 background. Altogether, these results suggest a conserved function for the N-terminal domain in evolution.


Asunto(s)
Proteínas de Plantas/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Humanos , Mamíferos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Ratas , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
16.
Plant J ; 75(6): 965-76, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23742014

RESUMEN

The ABA Binding Factor/ABA-Responsive Element Binding Proteins (ABF/AREB) subfamily of bZIP-type transcription factors are positive effectors of ABA responses. Here, we examine the proteolytic regulation of two members: Arabidopsis thaliana ABF1 and ABF3. Both transcription factors are unstable in seedlings, and their degradation is sensitive to proteasome inhibition. ABA treatment of seedlings leads to their rapid accumulation, the result of slowed proteolysis. Deletion of the conserved C-terminal region required for 14-3-3 interaction destabilizes the proteins. The degradation of ABF1 and ABF3 are slower in vivo in seedlings lacking the ubiquitin E3 ligase KEEP ON GOING (KEG), and in vitro in extracts from keg seedlings, implicating KEG in their degradation. ABF1 and ABF3 are ubiquitylation substrates of KEG in vitro, and in vitro pull-down assays document their direct interaction. In contrast to ABI5, another KEG substrate, the degradation of ABFs and proteolytic regulation of ABFs by ABA still occurs in keg seedlings, suggesting that additional E3s participate in ABF1 and ABF3 proteolysis. Loss of ABF1 or ABF3 in the keg background has a phenotypic effect similar to the loss of ABI5, and there is no additional rescue of the keg phenotype in abf1 abf3 abi5 keg seedlings. This result suggests that the abundance of other substrates is altered in keg seedlings, affecting growth. In conclusion, ABF1 and ABF3 abundance is affected by ABA and KEG, and the conserved C4 region serves as a stabilizing element.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Secuencia Conservada , Fenotipo , Inhibidores de Proteasoma , Proteolisis , Plantones/metabolismo
18.
BMC Plant Biol ; 12: 102, 2012 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-22770232

RESUMEN

BACKGROUND: Transcription of plastid-encoded genes requires two different DNA-dependent RNA polymerases, a nuclear-encoded polymerase (NEP) and plastid-encoded polymerase (PEP). Recent studies identified two related pfkB-type carbohydrate kinases, named FRUCTOKINASE-LIKE PROTEIN (FLN1 and FLN2), as components of the thylakoid bound PEP complex in both Arabidopsis thaliana and Sinapis alba (mustard). Additional work demonstrated that RNAi-mediated reduction in FLN expression specifically diminished transcription of PEP-dependent genes. RESULTS: Here, we report the characterization of Arabidopsis FLN knockout alleles to examine the contribution of each gene in plant growth, chloroplast development, and in mediating PEP-dependent transcription. We show that fln plants have severe phenotypes with fln1 resulting in an albino phenotype that is seedling lethal without a source of exogenous carbon. In contrast, fln2 plants display chlorosis prior to leaf expansion, but exhibit slow greening, remain autotrophic, can grow to maturity, and set viable seed. fln1 fln2 double mutant analysis reveals haplo-insufficiency, and fln1 fln2 plants have a similar, but more severe phenotype than either single mutant. Normal plastid development in both light and dark requires the FLNs, but surprisingly skotomorphogenesis is unaffected in fln seedlings. Seedlings genetically fln1-1 with dexamethasone-inducible FLN1-HA expression at germination are phenotypically indistinguishable from wild-type. Induction of FLN-HA after 24 hours of germination cannot rescue the mutant phenotype, indicating that the effects of loss of FLN are not always reversible. Examination of chloroplast gene expression in fln1-1 and fln2-1 by qRT-PCR reveals that transcripts of PEP-dependent genes were specifically reduced compared to NEP-dependent genes in both single mutants. CONCLUSIONS: Our results demonstrate that each FLN protein contributes to wild type growth, and acting additively are absolutely essential for plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Fructoquinasas/metabolismo , Plastidios/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fructoquinasas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Plastidios/genética , Transporte de Proteínas
20.
Plant Physiol ; 158(4): 1628-42, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22291198

RESUMEN

Amino acids serve as transport forms for organic nitrogen in the plant, and multiple transport steps are involved in cellular import and export. While the nature of the export mechanism is unknown, overexpression of GLUTAMINE DUMPER1 (GDU1) in Arabidopsis (Arabidopsis thaliana) led to increased amino acid export. To gain insight into GDU1's role, we searched for ethyl-methanesulfonate suppressor mutants and performed yeast-two-hybrid screens. Both methods uncovered the same gene, LOSS OF GDU2 (LOG2), which encodes a RING-type E3 ubiquitin ligase. The interaction between LOG2 and GDU1 was confirmed by glutathione S-transferase pull-down, in vitro ubiquitination, and in planta coimmunoprecipitation experiments. Confocal microscopy and subcellular fractionation indicated that LOG2 and GDU1 both localized to membranes and were enriched at the plasma membrane. LOG2 expression overlapped with GDU1 in the xylem and phloem tissues of Arabidopsis. The GDU1 protein encoded by the previously characterized intragenic suppressor mutant log1-1, with an arginine in place of a conserved glycine, failed to interact in the multiple assays, suggesting that the Gdu1D phenotype requires the interaction of GDU1 with LOG2. This hypothesis was supported by suppression of the Gdu1D phenotype after reduction of LOG2 expression using either artificial microRNAs or a LOG2 T-DNA insertion. Altogether, in accordance with the emerging bulk of data showing membrane protein regulation via ubiquitination, these data suggest that the interaction of GDU1 and the ubiquitin ligase LOG2 plays a significant role in the regulation of amino acid export from plant cells.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Sustitución de Aminoácidos/genética , Proteínas de Arabidopsis/química , Membrana Celular/enzimología , ADN Bacteriano/genética , Genes Supresores , Glucuronidasa/metabolismo , Proteínas de la Membrana/genética , MicroARNs/metabolismo , Microsomas/enzimología , Mutación/genética , Ácido Mirístico/metabolismo , Fenotipo , Haz Vascular de Plantas/enzimología , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Fracciones Subcelulares/enzimología , Supresión Genética , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...