Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(39): 10824-10834, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37829013

RESUMEN

The NMR spectra of side-chain protons in proteins provide important information, not only about their structure and dynamics, but also about the mechanisms that regulate interactions between macromolecules. However, in the solid-state, these resonances are particularly difficult to resolve, even in relatively small proteins. We show that magic-angle-spinning (MAS) frequencies of 160 kHz, combined with a high magnetic field of 1200 MHz proton Larmor frequency, significantly improve their spectral resolution. We investigate in detail the gain for MAS frequencies between 110 and 160 kHz MAS for a model sample as well as for the hepatitis B viral capsid assembled from 120 core-protein (Cp) dimers. For both systems, we found a significantly improved spectral resolution of the side-chain region in the 1H-13C 2D spectra. The combination of 160 kHz MAS frequency with a magnetic field of 1200 MHz, allowed us to assign 61% of the aliphatic protons of Cp. The side-chain proton assignment opens up new possibilities for structural studies and further characterization of protein-protein or protein-nucleic acid interactions.

2.
Nat Commun ; 14(1): 471, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709212

RESUMEN

Hepatitis B virus (HBV) capsid assembly modulators (CAMs) represent a recent class of anti-HBV antivirals. CAMs disturb proper nucleocapsid assembly, by inducing formation of either aberrant assemblies (CAM-A) or of apparently normal but genome-less empty capsids (CAM-E). Classical structural approaches have revealed the CAM binding sites on the capsid protein (Cp), but conformational information on the CAM-induced off-path aberrant assemblies is lacking. Here we show that solid-state NMR can provide such information, including for wild-type full-length Cp183, and we find that in these assemblies, the asymmetric unit comprises a single Cp molecule rather than the four quasi-equivalent conformers typical for the icosahedral T = 4 symmetry of the normal HBV capsids. Furthermore, while in contrast to truncated Cp149, full-length Cp183 assemblies appear, on the mesoscopic level, unaffected by CAM-A, NMR reveals that on the molecular level, Cp183 assemblies are equally aberrant. Finally, we use a eukaryotic cell-free system to reveal how CAMs modulate capsid-RNA interactions and capsid phosphorylation. Our results establish a structural view on assembly modulation of the HBV capsid, and they provide a rationale for recently observed differences between in-cell versus in vitro capsid assembly modulation.


Asunto(s)
Proteínas de la Cápside , Virus de la Hepatitis B , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Ensamble de Virus , Cápside/metabolismo , Nucleocápside/metabolismo , Antivirales/farmacología , Antivirales/metabolismo
3.
Angew Chem Int Ed Engl ; 61(32): e202201083, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35653505

RESUMEN

Experimentally determined protein structures often feature missing domains. One example is the C-terminal domain (CTD) of the hepatitis B virus capsid protein, a functionally central part of this assembly, crucial in regulating nucleic-acid interactions, cellular trafficking, nuclear import, particle assembly and maturation. However, its structure remained elusive to all current techniques, including NMR. Here we show that the recently developed proton-detected fast magic-angle-spinning solid-state NMR at >100 kHz MAS allows one to detect this domain and unveil its structural and dynamic behavior. We describe the experimental framework used and compare the domain's behavior in different capsid states. The developed approaches extend solid-state NMR observations to residues characterized by large-amplitude motion on the microsecond timescale, and shall allow one to shed light on other flexible protein domains still lacking their structural and dynamic characterization.


Asunto(s)
Proteínas de la Cápside , Cápside , Cápside/química , Proteínas de la Cápside/química , Virus de la Hepatitis B , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular/métodos , Protones
4.
Magn Reson (Gott) ; 3(1): 15-26, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37905180

RESUMEN

With the advent of faster magic-angle spinning (MAS) and higher magnetic fields, the resolution of biomolecular solid-state nuclear magnetic resonance (NMR) spectra has been continuously increasing. As a direct consequence, the always narrower spectral lines, especially in proton-detected spectroscopy, are also becoming more sensitive to temporal instabilities of the magnetic field in the sample volume. Field drifts in the order of tenths of parts per million occur after probe insertion or temperature change, during cryogen refill, or are intrinsic to the superconducting high-field magnets, particularly in the months after charging. As an alternative to a field-frequency lock based on deuterium solvent resonance rarely available for solid-state NMR, we present a strategy to compensate non-linear field drifts using simultaneous acquisition of a frequency reference (SAFR). It is based on the acquisition of an auxiliary 1D spectrum in each scan of the experiment. Typically, a small-flip-angle pulse is added at the beginning of the pulse sequence. Based on the frequency of the maximum of the solvent signal, the field evolution in time is reconstructed and used to correct the raw data after acquisition, thereby acting in its principle as a digital lock system. The general applicability of our approach is demonstrated on 2D and 3D protein spectra during various situations with a non-linear field drift. SAFR with small-flip-angle pulses causes no significant loss in sensitivity or increase in experimental time in protein spectroscopy. The correction leads to the possibility of recording high-quality spectra in a typical biomolecular experiment even during non-linear field changes in the order of 0.1 ppm h-1 without the need for hardware solutions, such as stabilizing the temperature of the magnet bore. The improvement of linewidths and peak shapes turns out to be especially important for 1H-detected spectra under fast MAS, but the method is suitable for the detection of carbon or other nuclei as well.

5.
J Biomol NMR ; 75(6-7): 255-272, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34170475

RESUMEN

Progress in NMR in general and in biomolecular applications in particular is driven by increasing magnetic-field strengths leading to improved resolution and sensitivity of the NMR spectra. Recently, persistent superconducting magnets at a magnetic field strength (magnetic induction) of 28.2 T corresponding to 1200 MHz proton resonance frequency became commercially available. We present here a collection of high-field NMR spectra of a variety of proteins, including molecular machines, membrane proteins, viral capsids, fibrils and large molecular assemblies. We show this large panel in order to provide an overview over a range of representative systems under study, rather than a single best performing model system. We discuss both carbon-13 and proton-detected experiments, and show that in 13C spectra substantially higher numbers of peaks can be resolved compared to 850 MHz while for 1H spectra the most impressive increase in resolution is observed for aliphatic side-chain resonances.


Asunto(s)
Cápside/química , Isótopos de Carbono , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular , Protones
6.
Front Mol Biosci ; 8: 807577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047563

RESUMEN

Protein plasticity and dynamics are important aspects of their function. Here we use solid-state NMR to experimentally characterize the dynamics of the 3.5 MDa hepatitis B virus (HBV) capsid, assembled from 240 copies of the Cp149 core protein. We measure both T 1 and T 1ρ relaxation times, which we use to establish detectors on the nanosecond and microsecond timescale. We compare our results to those from a 1 microsecond all-atom Molecular Dynamics (MD) simulation trajectory for the capsid. We show that, for the constituent residues, nanosecond dynamics are faithfully captured by the MD simulation. The calculated values can be used in good approximation for the NMR-non-detected residues, as well as to extrapolate into the range between the nanosecond and microsecond dynamics, where NMR has a blind spot at the current state of technology. Slower motions on the microsecond timescale are difficult to characterize by all-atom MD simulations owing to computational expense, but are readily accessed by NMR. The two methods are, thus, complementary, and a combination thereof can reliably characterize motions covering correlation times up to a few microseconds.

7.
Front Mol Biosci ; 6: 58, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396521

RESUMEN

We sequentially assigned the fully-protonated capsids made from core proteins of the Hepatitis B virus using proton detection at 100 kHz magic-angle spinning (MAS) in 0.7 mm rotors and compare sensitivity and assignment completeness to previously obtained assignments using carbon-detection techniques in 3.2 mm rotors and 17.5 kHz MAS. We show that proton detection shows a global gain of a factor ~50 in mass sensitivity, but that signal-to-noise ratios and completeness of the assignment was somewhat higher for carbon-detected experiments for comparable experimental times. We also show that deuteration and HN back protonation improves the proton linewidth at 100 kHz MAS by a factor of 1.5, from an average of 170-110 Hz, and by a factor of 1.3 compared to deuterated capsids at 60 kHz MAS in a 1.3 mm rotor. Yet, several HN protons cannot be back-exchanged due to solvent inaccessibility, which results in a total of 15% of the amides missing in the spectra.

8.
Biophys J ; 108(6): 1516-1526, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25809264

RESUMEN

The bacterial outer membrane comprises two main classes of components, lipids and membrane proteins. These nonsoluble compounds are conveyed across the aqueous periplasm along specific molecular transport routes: the lipid lipopolysaccharide (LPS) is shuttled by the Lpt system, whereas outer membrane proteins (Omps) are transported by chaperones, including the periplasmic Skp. In this study, we revisit the specificity of the chaperone-lipid interaction of Skp and LPS. High-resolution NMR spectroscopy measurements indicate that LPS interacts with Skp nonspecifically, accompanied by destabilization of the Skp trimer and similar to denaturation by the nonnatural detergent lauryldimethylamine-N-oxide (LDAO). Bioinformatic analysis of amino acid conservation, structural analysis of LPS-binding proteins, and MD simulations further confirm the absence of a specific LPS binding site on Skp, making a biological relevance of the interaction unlikely. Instead, our analysis reveals a highly conserved salt-bridge network, which likely has a role for Skp function.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Lipopolisacáridos/química , Chaperonas Moleculares/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Unión al ADN/genética , Detergentes/química , Dimetilaminas/química , Escherichia coli , Proteínas de Escherichia coli/genética , Chaperonas Moleculares/genética , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Desnaturalización Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos
9.
J Am Chem Soc ; 136(51): 17852-60, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25429710

RESUMEN

The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillus subtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains-the catalytic domain as well as the proposed peptidoglycan recognition domain-are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis.


Asunto(s)
Bacillus subtilis/enzimología , Pared Celular/enzimología , Modelos Moleculares , Peptidoglicano/metabolismo , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Dominio Catalítico , Mutación , Peptidil Transferasas/genética , Unión Proteica
10.
Proc Natl Acad Sci U S A ; 111(27): 9929-34, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958876

RESUMEN

Shigella flexneri proliferate in infected human epithelial cells at exceptionally high rates. This vigorous growth has important consequences for rapid progression to life-threatening bloody diarrhea, but the underlying metabolic mechanisms remain poorly understood. Here, we used metabolomics, proteomics, and genetic experiments to determine host and Shigella metabolism during infection in a cell culture model. The data suggest that infected host cells maintain largely normal fluxes through glycolytic pathways, but the entire output of these pathways is captured by Shigella, most likely in the form of pyruvate. This striking strategy provides Shigella with an abundant favorable energy source, while preserving host cell ATP generation, energy charge maintenance, and survival, despite ongoing vigorous exploitation. Shigella uses a simple three-step pathway to metabolize pyruvate at high rates with acetate as an excreted waste product. The crucial role of this pathway for Shigella intracellular growth suggests targets for antimicrobial chemotherapy of this devastating disease.


Asunto(s)
División Celular , Shigella/fisiología , Acetatos/metabolismo , Carbono/metabolismo , Citosol/metabolismo , Genoma Bacteriano , Células HeLa , Humanos , Metabolómica , Resonancia Magnética Nuclear Biomolecular , Oxígeno/metabolismo , Ácido Pirúvico/metabolismo , Shigella/genética , Shigella/metabolismo
11.
Angew Chem Int Ed Engl ; 53(20): 5069-72, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24700611

RESUMEN

NMR spectroscopy is used to detect site-specific intermolecular short-range contacts in a membrane-protein-chaperone complex. This is achieved by an "orthogonal" isotope-labeling scheme that permits the unambiguous detection of intermolecular NOEs between the well-folded chaperone and the unfolded substrate ensemble. The residues involved in these contacts are part of the chaperone-substrate contact interface. The approach is demonstrated for the 70 kDa bacterial Skp-tOmpA complex.


Asunto(s)
Chaperonas Moleculares/química , Sitios de Unión , Espectroscopía de Resonancia Magnética , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...