Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 16(6): 1774-1786, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27477279

RESUMEN

Faithful inheritance of eukaryotic genomes requires the orchestrated activation of multiple DNA replication origins (ORIs). Although origin firing is mechanistically conserved, how origins are specified and selected for activation varies across different model systems. Here, we provide a complete analysis of the nucleosomal landscape and replication program of the human parasite Leishmania major, building on a better evolutionary understanding of replication organization in Eukarya. We found that active transcription is a driving force for the nucleosomal organization of the L. major genome and that both the spatial and the temporal program of DNA replication can be explained as associated to RNA polymerase kinetics. This simple scenario likely provides flexibility and robustness to deal with the environmental changes that impose alterations in the genetic programs during parasitic life cycle stages. Our findings also suggest that coupling replication initiation to transcription elongation could be an ancient solution used by eukaryotic cells for origin maintenance.


Asunto(s)
Cromatina/parasitología , Replicación del ADN/genética , ADN/metabolismo , Leishmania major/genética , Animales , Momento de Replicación del ADN/genética , Células Eucariotas/parasitología , Humanos , Nucleosomas/parasitología , Parásitos/genética , Origen de Réplica/genética , Transcripción Genética
2.
Nucleic Acids Res ; 43(4): 2138-51, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25653166

RESUMEN

The Ku heterodimer serves in the initial step in repairing DNA double-strand breaks by the non-homologous end-joining pathway. Besides this key function, Ku also plays a role in other cellular processes including telomere maintenance. Inactivation of Ku can lead to DNA repair defects and telomere aberrations. In model organisms where Ku has been studied, inactivation can lead to DNA repair defects and telomere aberrations. In general Ku deficient mutants are viable, but a notable exception to this is human where Ku has been found to be essential. Here we report that similar to the situation in human Ku is required for cell proliferation in the fungus Ustilago maydis. Using conditional strains for Ku expression, we found that cells arrest permanently in G2 phase when Ku expression is turned off. Arrest results from cell cycle checkpoint activation due to persistent signaling via the DNA damage response (DDR). Our results point to the telomeres as the most likely source of the DNA damage signal. Inactivation of the DDR makes the Ku complex dispensable for proliferation in this organism. Our findings suggest that in U. maydis, unprotected telomeres arising from Ku depletion are the source of the signal that activates the DDR leading to cell cycle arrest.


Asunto(s)
Antígenos Nucleares/fisiología , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Proteínas Fúngicas/fisiología , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Telómero/metabolismo , Antígenos Nucleares/genética , Daño del ADN , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Autoantígeno Ku , Transducción de Señal , Telómero/química , Homeostasis del Telómero , Ustilago/genética
3.
Nucleic Acids Res ; 42(11): 7057-68, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24753426

RESUMEN

Robustness and completion of DNA replication rely on redundant DNA replication origins. Reduced efficiency of origin licensing is proposed to contribute to chromosome instability in CDK-deregulated cell cycles, a frequent alteration in oncogenesis. However, the mechanism by which this instability occurs is largely unknown. Current models suggest that limited origin numbers would reduce fork density favouring chromosome rearrangements, but experimental support in CDK-deregulated cells is lacking. We have investigated the pattern of origin firing efficiency in budding yeast cells lacking the CDK regulators Cdh1 and Sic1. We show that each regulator is required for efficient origin activity, and that both cooperate non-redundantly. Notably, origins are differentially sensitive to CDK deregulation. Origin sensitivity is independent on normal origin efficiency, firing timing or chromosomal location. Interestingly, at a chromosome arm, there is a shortage of origin firing involving active and dormant origins, and the extent of shortage correlates with the severity of CDK deregulation and chromosome instability. We therefore propose that CDK deregulation in G1 phase compromises origin redundancy by decreasing the number of active and dormant origins, leading to origin shortage and increased chromosome instability.


Asunto(s)
Proteínas Cdh1/fisiología , Inestabilidad Cromosómica , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Replicación del ADN , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas Cdh1/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Momento de Replicación del ADN , Eliminación de Gen , Dosificación de Gen , Proteínas de Saccharomyces cerevisiae/genética
4.
Nucleic Acids Res ; 41(19): 8943-58, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23901010

RESUMEN

The structure-specific Mus81-Eme1/Mms4 endonuclease contributes importantly to DNA repair and genome integrity maintenance. Here, using budding yeast, we have studied its function and regulation during the cellular response to DNA damage and show that this endonuclease is necessary for successful chromosome replication and cell survival in the presence of DNA lesions that interfere with replication fork progression. On the contrary, Mus81-Mms4 is not required for coping with replicative stress originated by acute treatment with hydroxyurea (HU), which causes fork stalling. Despite its requirement for dealing with DNA lesions that hinder DNA replication, Mus81-Mms4 activation is not induced by DNA damage at replication forks. Full Mus81-Mms4 activity is only acquired when cells finish S-phase and the endonuclease executes its function after the bulk of genome replication is completed. This post-replicative mode of action of Mus81-Mms4 limits its nucleolytic activity during S-phase, thus avoiding the potential cleavage of DNA substrates that could cause genomic instability during DNA replication. At the same time, it constitutes an efficient fail-safe mechanism for processing DNA intermediates that cannot be resolved by other proteins and persist after bulk DNA synthesis, which guarantees the completion of DNA repair and faithful chromosome replication when the DNA is damaged.


Asunto(s)
Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Endonucleasas/fisiología , Endonucleasas de ADN Solapado/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Endonucleasas de ADN Solapado/genética , Eliminación de Gen , Resolvasas de Unión Holliday/genética , Hidroxiurea/toxicidad , Viabilidad Microbiana , RecQ Helicasas/genética , Fase S/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Genes Cells ; 16(2): 152-65, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21143561

RESUMEN

We have investigated the effects of alterations in potassium homeostasis on cell cycle progression and genome stability in Saccharomyces cerevisiae. Yeast strains lacking the PPZ1 and PPZ2 phosphatase genes, which aberrantly accumulate potassium, are sensitive to agents causing replicative stress or DNA damage and present a cell cycle delay in the G(1) /S phase. A synthetic slow growth phenotype was identified in a subset of DNA repair mutants upon inhibition of Ppz activity. Moreover, we observe that this slow growth phenotype observed in cdc7(ts) mutants with reduced Ppz activity is reverted by disrupting the TRK1 potassium transporter gene. As over-expression of a mammalian potassium transporter leads to similar phenotypes, we conclude that these defects can be attributed to potassium accumulation. As we reported previously, internal potassium accumulation activates the Slt2 MAP kinase pathway. We show that the removal of SLT2 in ppz1 ppz2 mutants ameliorates sensitivity to agents causing replication stress and DNA damage, whereas over-activation of the pathway leads to similar cell cycle-related defects. Taken together, these results are consistent with inappropriate potassium accumulation reducing DNA replication efficiency, negatively influencing DNA integrity and leading to the requirement of mismatch repair, the MRX complex, or homologous recombination pathways for normal growth.


Asunto(s)
Daño del ADN , Fosfoproteínas Fosfatasas/genética , Potasio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Ciclo Celular/genética , Reparación de la Incompatibilidad de ADN , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Fase G1/genética , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación/genética , Proteínas Serina-Treonina Quinasas/genética , Fase S/genética
6.
EMBO J ; 28(19): 2992-3004, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19661920

RESUMEN

The eukaryotic replisome is a crucial determinant of genome stability, but its structure is still poorly understood. We found previously that many regulatory proteins assemble around the MCM2-7 helicase at yeast replication forks to form the replisome progression complex (RPC), which might link MCM2-7 to other replisome components. Here, we show that the RPC associates with DNA polymerase alpha that primes each Okazaki fragment during lagging strand synthesis. Our data indicate that a complex of the GINS and Ctf4 components of the RPC is crucial to couple MCM2-7 to DNA polymerase alpha. Others have found recently that the Mrc1 subunit of RPCs binds DNA polymerase epsilon, which synthesises the leading strand at DNA replication forks. We show that cells lacking both Ctf4 and Mrc1 experience chronic activation of the DNA damage checkpoint during chromosome replication and do not complete the cell cycle. These findings indicate that coupling MCM2-7 to replicative polymerases is an important feature of the regulation of chromosome replication in eukaryotes, and highlight a key role for Ctf4 in this process.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Polimerasa I/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas Cromosómicas no Histona , ADN/metabolismo , Componente 7 del Complejo de Mantenimiento de Minicromosoma , Unión Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética
7.
Mol Biol Cell ; 18(10): 3894-902, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17652453

RESUMEN

The Mrc1 and Tof1 proteins are conserved throughout evolution, and in budding yeast they are known to associate with the MCM helicase and regulate the progression of DNA replication forks. Previous work has shown that Mrc1 is important for the activation of checkpoint kinases in responses to defects in S phase, but both Mrc1 and Tof1 also regulate the normal process of chromosome replication. Here, we show that these two important factors control the normal progression of DNA replication forks in distinct ways. The rate of progression of DNA replication forks is greatly reduced in the absence of Mrc1 but much less affected by loss of Tof1. In contrast, Tof1 is critical for DNA replication forks to pause at diverse chromosomal sites where nonnucleosomal proteins bind very tightly to DNA, and this role is not shared with Mrc1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Centrómero/metabolismo , Cromosomas Fúngicos/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN
8.
Genes Dev ; 19(16): 1905-19, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16103218

RESUMEN

Eukaryotic cells regulate the progression and integrity of DNA replication forks to maintain genomic stability and couple DNA synthesis to other processes. The budding yeast proteins Mrc1 and Tof1 associate with the putative MCM-Cdc45 helicase and limit progression of the replisome when nucleotides are depleted, and the checkpoint kinases Mec1 and Rad53 stabilize such stalled forks and prevent disassembly of the replisome. Forks also pause transiently during unperturbed chromosome replication, at sites where nonnucleosomal proteins bind DNA tightly. We describe a method for inducing prolonged pausing of forks at protein barriers assembled at unique sites on a yeast chromosome, allowing us to examine for the first time the effects of pausing upon replisome integrity. We show that paused forks maintain an intact replisome that contains Mrc1, Tof1, MCM-Cdc45, GINS, and DNA polymerases alpha and epsilon and that recruits the Rrm3 helicase. Surprisingly, pausing does not require Mrc1, although Tof1 and Csm3 are both important. In addition, the integrity of the paused forks does not require Mec1, Rad53, or recombination. We also show that paused forks at analogous barriers in the rDNA are regulated similarly. These data indicate that paused and stalled eukaryotic replisomes resemble each other but are regulated differently.


Asunto(s)
Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Genéticos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética
9.
J Cell Sci ; 117(Pt 4): 545-57, 2004 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-14709718

RESUMEN

SWM1 was originally identified for its role in the late steps of the sporulation process, being required for spore wall assembly. This protein, recently identified as one of the core subunits of the anaphase-promoting complex (APC) is also required to complete cell separation in vegetative cells during growth at high temperature. Mutants lacking SWM1 show a thermosensitive growth defect that is suppressed by osmotic support in the culture medium. At the restrictive temperature, swm1 mutants are unable to complete separation, forming chains of cells that remain associated and, with prolonged incubation times, the stability of the cell wall is compromised, resulting in cell lysis. This separation defect is due to a reduction in expression of CTS1 (the gene encoding chitinase) and a group of genes involved in cell separation (such as ENG1,SCW11, DSE1 and DSE2). Interestingly, these genes are specifically regulated by the transcription factor Ace2p, suggesting that Swm1p is required for normal expression of Ace2p-dependent genes during growth at high temperatures. Although no defect in Ace2p localization can be observed at 28 degrees C, this transcription factor is unable to enter the nucleus of the daughter cell during growth at 38 degrees C. Under these growth conditions, swm1 cells undergo a delay in exit from mitosis, as determined by analysis of Clb2p degradation and Cdc28p-Clb2p kinase assays, and this could be the reason for the cytoplasmic localization of Ace2p.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Factores de Transcripción/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Quitinasas/metabolismo , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Factores de Tiempo , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas
10.
Int Rev Cytol ; 212: 133-207, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11804036

RESUMEN

Replication and segregation of the information contained in genomic DNA are strictly regulated processes that eukaryotic cells alternate to divide successfully. Experimental work on yeast has suggested that this alternation is achieved through oscillations in the activity of a serine/threonine kinase complex, CDK, which ensures the timely activation of DNA synthesis. At the same time, this CDK-mediated activation sets up the basis of the mechanism that ensures ploidy maintenance in eukaryotes. DNA synthesis is initiated at discrete sites of the genome called origins of replication on which a prereplicative complex (pre-RC) of different protein subunits is formed during the G1 phase of the cell division cycle. Only after pre-RCs are formed is the genome competent to be replicated. Several lines of evidence suggest that CDK activity prevents the assembly of pre-RCs ensuring single rounds of genome replication during each cell division cycle. This review offers a descriptive discussion of the main molecular events that a unicellular eukaryote such as the budding yeast Saccharomyces cerevisiae undergoes to initiate DNA replication.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Replicación del ADN/genética , ADN/biosíntesis , Células Eucariotas/metabolismo , Genes cdc/fisiología , Levaduras/genética , Animales , Células Eucariotas/citología , Evolución Molecular , Humanos , Ploidias , Levaduras/citología , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...