Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glia ; 72(2): 245-273, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37772368

RESUMEN

Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.


Asunto(s)
Isquemia Encefálica , Células-Madre Neurales , Ratones , Animales , Astrocitos/metabolismo , Neuroglía/metabolismo , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Isquemia Encefálica/metabolismo , Antígenos/metabolismo
2.
Brain ; 146(1): 237-251, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170728

RESUMEN

Multiple system atrophy is a progressive neurodegenerative disease with prominent autonomic and motor features. During early stages, different subtypes of the disease are distinguished by their predominant parkinsonian or cerebellar symptoms, reflecting its heterogeneous nature. The pathognomonic feature of multiple system atrophy is the presence of α-synuclein (αSyn) protein deposits in oligodendroglial cells. αSyn can assemble in specific cellular or disease environments and form αSyn strains with unique structural features, but the ability of αSyn strains to propagate in oligodendrocytes remains elusive. Recently, it was shown that αSyn strains with related conformations exist in the brains of patients. Here, we investigated whether different αSyn strains can influence multiple system atrophy progression in a strain-dependent manner. To this aim, we injected two recombinant αSyn strains (fibrils and ribbons) in multiple system atrophy transgenic mice and found that they determined disease severity in multiple system atrophy via host-restricted and cell-specific pathology in vivo. αSyn strains significantly impact disease progression in a strain-dependent way via oligodendroglial, neurotoxic and immune-related mechanisms. Neurodegeneration and brain atrophy were accompanied by unique microglial and astroglial responses and the recruitment of central and peripheral immune cells. The differential activation of microglial cells correlated with the structural features of αSyn strains both in vitro and in vivo. Spectral analysis showed that ribbons propagated oligodendroglial inclusions that were structurally distinct from those of fibrils, with resemblance to oligodendroglial inclusions, in the brains of patients with multiple system atrophy. This study, therefore, shows that the multiple system atrophy phenotype is governed by both the nature of the αSyn strain and the host environment and that by injecting αSyn strains into an animal model of the disease, a more comprehensive phenotype can be established.


Asunto(s)
Atrofia de Múltiples Sistemas , alfa-Sinucleína , Ratones , Animales , alfa-Sinucleína/metabolismo , Atrofia de Múltiples Sistemas/patología , Modelos Animales de Enfermedad , Ratones Transgénicos , Gravedad del Paciente , Encéfalo/patología
3.
Front Cell Neurosci ; 16: 1054919, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568889

RESUMEN

Introduction: Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. Methods and results: In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. Conclusion: Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...