Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174646, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986696

RESUMEN

Although anthropogenic activities are the primary drivers of increased greenhouse gas (GHG) emissions, it is crucial to acknowledge that wetlands are a significant source of these gases. Brazil's Pantanal, the largest tropical inland wetland, includes numerous lacustrine systems with freshwater and soda lakes. This study focuses on soda lakes to explore potential biogeochemical cycling and the contribution of biogenic GHG emissions from the water column, particularly methane. Both seasonal variations and the eutrophic status of each examined lake significantly influenced GHG emissions. Eutrophic turbid lakes (ET) showed remarkable methane emissions, likely due to cyanobacterial blooms. The decomposition of cyanobacterial cells, along with the influx of organic carbon through photosynthesis, accelerated the degradation of high organic matter content in the water column by the heterotrophic community. This process released byproducts that were subsequently metabolized in the sediment leading to methane production, more pronounced during periods of increased drought. In contrast, oligotrophic turbid lakes (OT) avoided methane emissions due to high sulfate levels in the water, though they did emit CO2 and N2O. Clear vegetated oligotrophic turbid lakes (CVO) also emitted methane, possibly from organic matter input during plant detritus decomposition, albeit at lower levels than ET. Over the years, a concerning trend has emerged in the Nhecolândia subregion of Brazil's Pantanal, where the prevalence of lakes with cyanobacterial blooms is increasing. This indicates the potential for these areas to become significant GHG emitters in the future. The study highlights the critical role of microbial communities in regulating GHG emissions in soda lakes, emphasizing their broader implications for global GHG inventories. Thus, it advocates for sustained research efforts and conservation initiatives in this environmentally critical habitat.

2.
Environ Res ; 237(Pt 1): 116889, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37595826

RESUMEN

Information on pollutant trophodynamics can be crucial for public health, as contaminated food consumption may lead to deleterious effects. This study was performed in Puruzinho Lake, a remote body of water in the Brazilian Amazon from which a riparian human population obtains an important part of its animal protein intake. Samples from 92 individuals, comprising 13 species and four trophic guilds (iliophagous, planktivorous, omnivorous, and piscivorous fish) were analysed for the determination of trace elements (Fe, Cr, Mn, Ni, Zn, Ca, Sr, Cd, Sn, Tl and Pb) and methylmercury concentrations. Samples from the same individuals had already been analysed for stable isotope (SI) measurements (δ13C and δ15N) in a previous investigation and the SI data have been statistically treated with those generated in this study for the evaluation of trophic dynamics of contaminants. Methylmercury was the only analyte that biomagnified, presenting TMF values of 4.65 and 4.55 for total and resident ichthyofauna, respectively. Trace elements presented either trophic dilution or independence from the trophic position, constituting a behaviour that was coherent with that found in the scientific literature. The similarity between Ni behaviour through the trophic web to that of essential elements contributes to the discussion on the essentiality of this metal to fish. Considering the Non-cancer Risk Assessment, the calculated Target Hazard Quotient (THQ) values were higher than 1.0 for all analysed individuals for methylmercury, as well as for only one individual for nickel. No other analyte rendered THQ values higher than 1.0.

3.
Microb Ecol ; 85(3): 892-903, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35916937

RESUMEN

Soda lake environments are known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effects of different environmental conditions of six adjacent soda lakes in the Pantanal biome (Mato Grosso do Sul state, Brazil) on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes into three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, which was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were associated with high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and with lower salinity and pH levels. Stress response metabolism was enhanced in OT and ET lakes and underrepresented in CVO lakes. The microbiome dataset of this study can serve as a baseline for restoring impacted soda lakes. Altogether, the results of this study demonstrate the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.


Asunto(s)
Cianobacterias , Lagos , Lagos/química , Lagos/microbiología , Brasil , Eutrofización , Cianobacterias/crecimiento & desarrollo , Cianobacterias/aislamiento & purificación , Metagenómica
4.
Nat Plants ; 6(10): 1225-1230, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33051618

RESUMEN

Tropical forests may be vulnerable to climate change1-3 if photosynthetic carbon uptake currently operates near a high temperature limit4-6. Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: stomatal limitation (H1), an indirect response due to temperature-associated changes in atmospheric vapour pressure deficit (VPD)7, and biochemical restrictions (H2), a direct temperature response8,9. Their relative control predicts different outcomes-H1 is expected to diminish with stomatal responses to future co-occurring elevated atmospheric [CO2], whereas H2 portends declining photosynthesis with increasing temperatures. Distinguishing the two mechanisms at high temperatures is therefore critical, but difficult because VPD is highly correlated with temperature in natural settings. We used a forest mesocosm to quantify the sensitivity of tropical gross ecosystem productivity (GEP) to future temperature regimes while constraining VPD by controlling humidity. We then analytically decoupled temperature and VPD effects under current climate with flux-tower-derived GEP trends in situ from four tropical forest sites. Both approaches showed consistent, negative sensitivity of GEP to VPD but little direct response to temperature. Importantly, in the mesocosm at low VPD, GEP persisted up to 38 °C, a temperature exceeding projections for tropical forests in 2100 (ref. 10). If elevated [CO2] mitigates VPD-induced stomatal limitation through enhanced water-use efficiency as hypothesized9,11, tropical forest photosynthesis may have a margin of resilience to future warming.


Asunto(s)
Fotosíntesis , Árboles/fisiología , Presión Atmosférica , Cambio Climático , Ecosistema , Humedad , Bosque Lluvioso , Temperatura , Clima Tropical
5.
Am J Phys Anthropol ; 172(4): 650-663, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32491211

RESUMEN

OBJECTIVE: The main objective of this study is to investigate diet patterns among rural and urban populations of the Center-West, Northeast, and Amazon regions of Brazil through the carbon and nitrogen isotopic composition of fingernails, recognizing that the extent of market integration is a key driver of food consumption. MATERIALS AND METHODS: In the Center-West, Northeast, and Amazon regions of Brazil, fingernails were sampled in clusters encompassing a major city, town, and rural village. A total of 2,133 fingernails were analyzed. Fingernails were clipped by donors using fingernail clippers. In the laboratory, samples were cleaned then weighed in small tin capsules before being isotopically analyzed for carbon and nitrogen. RESULTS: The overall mean δ13 C and δ15 N were -19.7 ± 2.8‰ and 10.6 ± 1.1‰, respectively. In the more remote villages, where access to food markets is more challenging, lower δ13 C prevails, suggesting that Brazilian staple foods (rice, beans, and farinha) still dominate. In areas with easier access to food markets, δ13 C values were higher, suggesting a change to a diet based on C4 plants, typical of a Brazilian supermarket diet. The variability among inhabitants in the same location expressed by a significant inverse correlation between δ13 C and δ15 N fingernail values suggested that "market integration" does not affect everyone equally in each community. DISCUSSION AND CONCLUSION: The nutrition transition has not yet reached some remote villages in these regions of Brazil or that the nutrition transition has not yet reached all residents of these remote villages. On the other hand, in several villages there is a considerable adherence to the supermarket diet or that some residents of these villages are already favoring processed food.


Asunto(s)
Isótopos de Carbono/análisis , Dieta/estadística & datos numéricos , Uñas/química , Población Rural/estadística & datos numéricos , Población Urbana/estadística & datos numéricos , Adulto , Antropología Física , Brasil , Femenino , Humanos , Masculino , Persona de Mediana Edad , Isótopos de Nitrógeno/análisis , Adulto Joven
6.
Isotopes Environ Health Stud ; 56(4): 346-357, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32508164

RESUMEN

Considering the increasing pet owner's concern about the food their pets are consuming, in this study we investigated the origin of the main ingredients in wet and dry foods produced in Brazil using stable isotope ratios of carbon and nitrogen. We concluded that chicken and pork seem to be the dominant ingredients in most of the samples, with larger proportions in wet cat food. Even in pet foods showing 'beef' as the main ingredient on the label, we found a low proportion of bovine products in both wet and dry cat foods. Comparing the contribution of plant-derived products (C3 and C4 plants) and animal-derived products (chicken-pork, bovine and fish), approximately 21 % of cat foods had more than 30 % of ingredients with plant origin in their composition. The high amount of plant-derived products in cat foods found here raises the question whether this should be mentioned on package labels.


Asunto(s)
Alimentación Animal/análisis , Isótopos de Carbono/análisis , Análisis de los Alimentos/métodos , Carne/análisis , Isótopos de Nitrógeno/análisis , Plantas/química , Animales , Brasil , Gatos , Bovinos , Pollos , Peces
7.
Molecules ; 25(6)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213848

RESUMEN

Several previous studies on targeted food items using carbon and nitrogen stable isotope ratios in Brazil have revealed that many of the items investigated are adulterated; mislabeled or even fraud. Here, we present the first Brazilian isotopic baseline assessment that can be used not only in future forensic cases involving food authenticity, but also in human forensic anthropology studies. The δ13C and δ15N were determined in 1245 food items and 374 beverages; most of them made in Brazil. The average δ13C and δ15N of C3 plants were -26.7 ± 1.5‱, and 3.9 ± 3.9‱, respectively, while the average δ13C and δ15N of C4 plants were -11.5 ± 0.8‱ and 4.6 ± 2.6‱, respectively. The δ13C and δ15N of plant-based processed foods were -21.8 ± 4.8‱ and 3.9 ± 2.7‱, respectively. The average δ13C and δ15N of meat, including beef, poultry, pork and lamb were -16.6 ± 4.7‱, and 5.2 ± 2.6‱, respectively, while the δ13C and δ15N of animal-based processed foods were -17.9 ± 3.3‱ and 3.3 ± 3.5‱, respectively. The average δ13C of beverages, including beer and wine was -22.5 ± 3.1‱. We verified that C-C4 constitutes a large proportion of fresh meat, dairy products, as well as animal and plant-based processed foods. The reasons behind this high proportion will be addressed in this study.


Asunto(s)
Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Animales , Bebidas/análisis , Brasil , Bovinos , Productos Lácteos/análisis , Aves de Corral , Ovinos , Vino/análisis
8.
Nat Ecol Evol ; 3(12): 1754-1761, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31712699

RESUMEN

Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.


Asunto(s)
Ecosistema , Madera , Bosques , Filogenia , Clima Tropical
9.
Toxins (Basel) ; 11(5)2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137619

RESUMEN

Variability in snake venom composition has been frequently reported and correlated to the adaptability of snakes to environmental conditions. Previous studies report plasticity for the venom phenotype. However, these observations are not conclusive, as the results were based on pooled venoms, which present high individual variability. Here we tested the hypothesis of plasticity by influence of confinement and single diet type in the venom composition of 13 adult specimens of Bothrops atrox snakes, maintained under captivity for more than three years. Individual variability in venom composition was observed in samples extracted just after the capture of the snakes. However, composition was conserved in venoms periodically extracted from nine specimens, which presented low variability restricted to the less abundant components. In a second group, composed of four snakes, drastic changes were observed in the venom samples extracted at different periods, mostly related to snake venom metalloproteinases (SVMPs), the core function toxins of B. atrox venom, which occurred approximately between 400 and 500 days in captivity. These data show plasticity in the venom phenotype during the lifetime of adult snakes maintained under captive conditions. Causes or functional consequences involved in the phenotype modification require further investigations.


Asunto(s)
Bothrops , Venenos de Crotálidos/análisis , Animales , Variación Biológica Individual , Venenos de Crotálidos/enzimología , Femenino , Metaloproteasas/química , Fenotipo , Fosfolipasas A2/química , Proteínas de Reptiles/química , Serina Proteasas/química
10.
New Phytol ; 222(3): 1284-1297, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30720871

RESUMEN

Seasonal dynamics in the vertical distribution of leaf area index (LAI) may impact the seasonality of forest productivity in Amazonian forests. However, until recently, fine-scale observations critical to revealing ecological mechanisms underlying these changes have been lacking. To investigate fine-scale variation in leaf area with seasonality and drought we conducted monthly ground-based LiDAR surveys over 4 yr at an Amazon forest site. We analysed temporal changes in vertically structured LAI along axes of both canopy height and light environments. Upper canopy LAI increased during the dry season, whereas lower canopy LAI decreased. The low canopy decrease was driven by highly illuminated leaves of smaller trees in gaps. By contrast, understory LAI increased concurrently with the upper canopy. Hence, tree phenological strategies were stratified by height and light environments. Trends were amplified during a 2015-2016 severe El Niño drought. Leaf area low in the canopy exhibited behaviour consistent with water limitation. Leaf loss from short trees in high light during drought may be associated with strategies to tolerate limited access to deep soil water and stressful leaf environments. Vertically and environmentally structured phenological processes suggest a critical role of canopy structural heterogeneity in seasonal changes in Amazon ecosystem function.


Asunto(s)
Sequías , Bosques , Luz , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de la radiación , Estaciones del Año , Brasil , El Niño Oscilación del Sur
11.
New Phytol ; 220(2): 435-446, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29974469

RESUMEN

The prediction of vegetation responses to climate requires a knowledge of how climate-sensitive plant traits mediate not only the responses of individual plants, but also shifts in the species and functional compositions of whole communities. The emission of isoprene gas - a trait shared by one-third of tree species - is known to protect leaf biochemistry under climatic stress. Here, we test the hypothesis that isoprene emission shapes tree species compositions in tropical forests by enhancing the tolerance of emitting trees to heat and drought. Using forest inventory data, we estimated the proportional abundance of isoprene-emitting trees (pIE) at 103 lowland tropical sites. We also quantified the temporal composition shifts in three tropical forests - two natural and one artificial - subjected to either anomalous warming or drought. Across the landscape, pIE increased with site mean annual temperature, but decreased with dry season length. Through time, pIE strongly increased under high temperatures, and moderately increased following drought. Our analysis shows that isoprene emission is a key plant trait determining species responses to climate. For species adapted to seasonal dry periods, isoprene emission may tradeoff with alternative strategies, such as leaf deciduousness. Community selection for isoprene-emitting species is a potential mechanism for enhanced forest resilience to climatic change.


Asunto(s)
Butadienos/análisis , Cambio Climático , Hemiterpenos/análisis , Filogenia , Árboles/fisiología , Clima Tropical , Bosques , Factores de Tiempo
12.
New Phytol ; 219(3): 914-931, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29786858

RESUMEN

The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100.


Asunto(s)
Sequías , Bosques , Biomasa , Dióxido de Carbono/farmacología , Simulación por Computador , Geografía , Modelos Teóricos , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/fisiología , Lluvia , América del Sur
13.
Glob Chang Biol ; 23(3): 1240-1257, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27644012

RESUMEN

Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model was able to explain most of the variability in GEP at hourly (R2  = 0.77) to interannual (R2  = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). This work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms.


Asunto(s)
Ecosistema , Bosques , Fotosíntesis , Hojas de la Planta , Estaciones del Año , Árboles
14.
Proc Biol Sci ; 283(1844)2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27974517

RESUMEN

Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change.


Asunto(s)
Bosques , Filogenia , Árboles/clasificación , Clima Tropical , Evolución Biológica , Ecología , América del Sur
15.
Environ Res ; 151: 286-296, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27517756

RESUMEN

The present study assesses mercury biomagnification and the trophic structure of the ichthyofauna from the Puruzinho Lake, Brazilian Amazon. In addition to mercury determination, the investigation comprised the calculation of Trophic Magnification Factor (TMF) and Trophic Magnification Slope (TMS), through the measurements of stable isotopes of carbon (δ13C) and nitrogen (δ15N) in fish samples. These assessments were executed in two different scenarios, i.e., considering (1) all fish species or (2) only the resident fish (excluding the migratory species). Bottom litter, superficial sediment and seston were the sources used for generating the trophic position (TP) data used in the calculation of the TMF. Samples from 84 fish were analysed, comprising 13 species, which were categorized into four trophic guilds: iliophagous, planktivorous, omnivorous and piscivorous fish. The δ13C values pointed to the separation of the ichthyofauna into two groups. One group comprised iliophagous and planktivorous species, which are linked to the food chains of phytoplankton and detritus. The other group was composed by omnivorous and piscivorous fish, which are associated to the trophic webs of phytoplankton, bottom litter, detritus, periphyton, as well as to food chains of igapó (blackwater-flooded Amazonian forests). The TP values suggest that the ichthyofauna from the Puruzinho Lake is part of a short food web, with three well-characterized trophic levels. Mercury concentrations and δ13C values point to multiple sources for Hg input and transfer. The similarity in Hg levels and TP values between piscivorous and planktivorous fish suggests a comparable efficiency for the transfer of this metal through pelagic and littoral food chains. Regarding the two abovementioned scenarios, i.e., considering (1) the entire ichthyofauna and (2) only the resident species, the TMF values were 5.25 and 4.49, as well as the TMS values were 0.21 and 0.19, respectively. These findings confirm that Hg biomagnifies through the food web of Puruzinho Lake ichthyofauna. The migratory species did not significantly change mercury biomagnification rate in Puruzinho Lake; however, they may play a relevant role in Hg transport. The biomagnification rate (TMS value) in Puruzinho Lake was higher than the average values for its latitude, being comparable to TMS values of temperate and polar systems (marine and freshwater environments).


Asunto(s)
Peces/metabolismo , Cadena Alimentaria , Mercurio/metabolismo , Animales , Isótopos de Carbono/metabolismo , Isótopos de Nitrógeno/metabolismo
16.
PLoS One ; 10(8): e0133139, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26308074

RESUMEN

Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests, and to highlight areas where cost savings in carbon stock assessments could be most easily made.


Asunto(s)
Carbono/análisis , Conservación de los Recursos Naturales/economía , Análisis Costo-Beneficio , Bosques , Clima Tropical , Cambio Climático , Actividades Humanas , Humanos , Tallos de la Planta/química , Suelo/química , Estadística como Asunto , Factores de Tiempo , Madera/química
17.
Ecol Lett ; 18(7): 636-45, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25963522

RESUMEN

Forest biophysical structure - the arrangement and frequency of leaves and stems - emerges from growth, mortality and space filling dynamics, and may also influence those dynamics by structuring light environments. To investigate this interaction, we developed models that could use LiDAR remote sensing to link leaf area profiles with tree size distributions, comparing models which did not (metabolic scaling theory) and did allow light to influence this link. We found that a light environment-to-structure link was necessary to accurately simulate tree size distributions and canopy structure in two contrasting Amazon forests. Partitioning leaf area profiles into size-class components, we found that demographic rates were related to variation in light absorption, with mortality increasing relative to growth in higher light, consistent with a light environment feedback to size distributions. Combining LiDAR with models linking forest structure and demography offers a high-throughput approach to advance theory and investigate climate-relevant tropical forest change.


Asunto(s)
Bosques , Luz , Hojas de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Brasil , Modelos Biológicos , Imágenes Satelitales , Clima Tropical
18.
Isotopes Environ Health Stud ; 49(3): 325-35, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24117429

RESUMEN

Strategies to minimise intraspecific competition are common in wild animals. For example, individuals may exploit food resources at different levels of the food chain. Analyses of stable isotopes are particularly useful for confirming variations in an intraspecific niche because the chemical composition of animals tends to reflect both the food consumed and the habitats occupied by the species. However, studies using this methodology to investigate neotropical crocodilians are scarce. This study aimed to verify the existence of ontogenetic and sexual niche variation in broad-snouted caiman in a silvicultural landscape in Brazil through the use of carbon and nitrogen stable isotopes. The isotopic ratios of carbon and nitrogen were determined in claw samples collected from 24 juveniles, 8 adults, and 16 hatchlings of C. latirostris. We identified a discrete ontogenetic variation in the isotopic niche and sexual difference only for juveniles. These results may indicate differences in the exploitation resources and a consequent reduction in competition between age classes.


Asunto(s)
Caimanes y Cocodrilos/fisiología , Ecosistema , Caimanes y Cocodrilos/crecimiento & desarrollo , Animales , Brasil , Isótopos de Carbono/metabolismo , Femenino , Masculino , Espectrometría de Masas , Isótopos de Nitrógeno/metabolismo , Caracteres Sexuales
19.
An Acad Bras Cienc ; 84(4): 919-30, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23207700

RESUMEN

Streamwater is affected by several processes in the watershed including anthropogenic activities that result in changes in water quality as well as in the functioning of these stream ecosystems. Therefore, this work aims to evaluate the concentration of major ions (Ca(2+), Mg(2+), Na(+), K(+), NH4(+), NO3(-), NO2(-), Cl(-), SO4(2-), PO4(3-), HCO3(-)) in streams in the state of São Paulo (southeast Brazil). The sampling sites are located at undisturbed (ombrophilus dense forest, semideciduous forest and savanna - cerrado) and disturbed areas (pasture, urbanization and sugar cane crops). Streamwater chemistry varied according to land use change and, in general, was higher in disturbed sites. Streams located in undisturbed sites at Ribeira de Iguape/Alto Paranapanema watershed (streams 1, 2 and 3) seem to be regulated by soil characteristics, as the disturbed streams located at the same watershed covered by pasture (stream 7) showed high concentration for the most of the variables. Exception to streams located at Pontal do Paranapanema watershed where both disturbed (stream 8) and undisturbed streams (stream 4 and 5) presented similar patterns for almost all variables measured.


Asunto(s)
Aniones/análisis , Monitoreo del Ambiente/métodos , Ríos/química , Contaminantes Químicos del Agua/análisis , Brasil , Eliminación de Residuos
20.
Ecol Lett ; 15(12): 1406-14, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22994288

RESUMEN

Tropical forest structural variation across heterogeneous landscapes may control above-ground carbon dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) - remotely estimated from LiDAR - control variation in above-ground coarse wood production (biomass growth). Using a statistical model, these factors predicted biomass growth across tree size classes in forest near Manaus, Brazil. The same statistical model, with no parameterisation change but driven by different observed canopy structure, predicted the higher productivity of a site 500 km east. Gap fraction and a metric of vegetation vertical extent and evenness also predicted biomass gains and losses for one-hectare plots. Despite significant site differences in canopy structure and carbon dynamics, the relation between biomass growth and light fell on a unifying curve. This supported our hypothesis, suggesting that knowledge of canopy structure can explain variation in biomass growth over tropical landscapes and improve understanding of ecosystem function.


Asunto(s)
Carbono/metabolismo , Luz , Modelos Biológicos , Hojas de la Planta/metabolismo , Árboles/metabolismo , Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...