Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(45): 7472-7482, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940583

RESUMEN

Serotonergic psychedelics, such as psilocybin and LSD, have garnered significant attention in recent years for their potential therapeutic effects and unique mechanisms of action. These compounds exert their primary effects through activating serotonin 5-HT2A receptors, found predominantly in cortical regions. By interacting with these receptors, serotonergic psychedelics induce alterations in perception, cognition, and emotions, leading to the characteristic psychedelic experience. One of the most crucial aspects of serotonergic psychedelics is their ability to promote neuroplasticity, the formation of new neural connections, and rewire neuronal networks. This neuroplasticity is believed to underlie their therapeutic potential for various mental health conditions, including depression, anxiety, and substance use disorders. In this mini-review, we will discuss how the 5-HT2A receptor activation is just one facet of the complex mechanisms of action of serotonergic psychedelics. They also interact with other serotonin receptor subtypes, such as 5-HT1A and 5-HT2C receptors, and with neurotrophin receptors (e.g., tropomyosin receptor kinase B). These interactions contribute to the complexity of their effects on perception, mood, and cognition. Moreover, as psychedelic research advances, there is an increasing interest in developing nonhallucinogenic derivatives of these drugs to create safer and more targeted medications for psychiatric disorders by removing the hallucinogenic properties while retaining the potential therapeutic benefits. These nonhallucinogenic derivatives would offer patients therapeutic advantages without the intense psychedelic experience, potentially reducing the risks of adverse reactions. Finally, we discuss the potential of psychedelics as substrates for post-translational modification of proteins as part of their mechanism of action.


Asunto(s)
Alucinógenos , Humanos , Alucinógenos/farmacología , Serotonina , Receptor de Serotonina 5-HT2A , Psilocibina , Ansiedad
2.
Science ; 379(6633): 700-706, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36795823

RESUMEN

Decreased dendritic spine density in the cortex is a hallmark of several neuropsychiatric diseases, and the ability to promote cortical neuron growth has been hypothesized to underlie the rapid and sustained therapeutic effects of psychedelics. Activation of 5-hydroxytryptamine (serotonin) 2A receptors (5-HT2ARs) is essential for psychedelic-induced cortical plasticity, but it is currently unclear why some 5-HT2AR agonists promote neuroplasticity, whereas others do not. We used molecular and genetic tools to demonstrate that intracellular 5-HT2ARs mediate the plasticity-promoting properties of psychedelics; these results explain why serotonin does not engage similar plasticity mechanisms. This work emphasizes the role of location bias in 5-HT2AR signaling, identifies intracellular 5-HT2ARs as a therapeutic target, and raises the intriguing possibility that serotonin might not be the endogenous ligand for intracellular 5-HT2ARs in the cortex.


Asunto(s)
Antidepresivos , Corteza Cerebral , Alucinógenos , Plasticidad Neuronal , Receptor de Serotonina 5-HT2A , Agonistas del Receptor de Serotonina 5-HT2 , Alucinógenos/farmacología , Plasticidad Neuronal/efectos de los fármacos , Serotonina/farmacología , Transducción de Señal , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Animales , Ratones , Ratones Noqueados , Antidepresivos/farmacología
3.
ACS Chem Neurosci ; 14(3): 351-358, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36630260

RESUMEN

Psychedelic compounds have displayed antidepressant potential in both humans and rodents. Despite their promise, psychedelics can induce undesired effects that pose safety concerns and limit their clinical scalability. The rational development of optimized psychedelic-related medicines will require a full mechanistic understanding of how these molecules produce therapeutic effects. While the hallucinogenic properties of psychedelics are generally attributed to activation of serotonin 2A receptors (5-HT2ARs), it is currently unclear if these receptors also mediate their antidepressant effects as several nonhallucinogenic analogues of psychedelics with antidepressant-like properties have been developed. Moreover, many psychedelics exhibit promiscuous pharmacology, making it challenging to identify their primary therapeutic target(s). Here, we use a combination of pharmacological and genetic tools to demonstrate that activation of 5-HT2A receptors is essential for tryptamine-based psychedelics to produce antidepressant-like effects in rodents. Our results suggest that psychedelic tryptamines can induce hallucinogenic and therapeutic effects through activation of the same receptor.


Asunto(s)
Alucinógenos , Animales , Humanos , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Triptaminas/farmacología , Roedores
5.
Life (Basel) ; 11(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34947858

RESUMEN

Social interaction and empathy play critical roles in determining the emotional well-being of humans. Stress-related depression and anxiety can be exacerbated or mitigated depending on specific social conditions. Although rodents are well known to exhibit emotional contagion and consolation behavior, the effects of group housing on stress-induced phenotypes in both males and females are not well established. Here, we investigated how the presence of stressed or unstressed conspecifics within a cage impact depression-related phenotypes. We housed male and female C57BL/6J mice in same-sex groups and subjected them to either gentle handling (GH) or the daily administration of corticosterone (CORT) for 10 days. The GH and CORT treatment groups were divided into cages of unmixed (GH or CORT) and mixed (GH and CORT) treatments. Depression-related phenotypes were measured using the forced swim test (FST) and sucrose preference test (SPT). We found that mixed housing alters FST behavior in a sex-specific manner. Male mice given chronic corticosterone (CORT) that were housed in the same cage as gently handled animals (GH) exhibited increased immobility, whereas GH females housed with CORT females demonstrated the opposite effect. This study underscores the importance of social housing conditions when evaluating stress-induced behavioral phenotypes and suggests that mixed cages of GH and CORT animals yield the greatest difference between treatment groups. The latter finding has important implications for identifying therapeutics capable of rescuing stress-induced behavioral deficits in the FST.

6.
Mol Psychiatry ; 26(11): 6237-6252, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34035476

RESUMEN

Psychological stress affects a wide spectrum of brain functions and poses risks for many mental disorders. However, effective therapeutics to alleviate or revert its deleterious effects are lacking. A recently synthesized psychedelic analog tabernanthalog (TBG) has demonstrated anti-addictive and antidepressant potential. Whether TBG can rescue stress-induced affective, sensory, and cognitive deficits, and how it may achieve such effects by modulating neural circuits, remain unknown. Here we show that in mice exposed to unpredictable mild stress (UMS), administration of a single dose of TBG decreases their anxiety level and rescues deficits in sensory processing as well as in cognitive flexibility. Post-stress TBG treatment promotes the regrowth of excitatory neuron dendritic spines lost during UMS, decreases the baseline neuronal activity, and enhances whisking-modulation of neuronal activity in the somatosensory cortex. Moreover, calcium imaging in head-fixed mice performing a whisker-dependent texture discrimination task shows that novel textures elicit responses from a greater proportion of neurons in the somatosensory cortex than do familiar textures. Such differential response is diminished by UMS and is restored by TBG. Together, our study reveals the effects of UMS on cortical neuronal circuit activity patterns and demonstrate that TBG combats the detrimental effects of stress by modulating basal and stimulus-dependent neural activity in cortical networks.


Asunto(s)
Alucinógenos , Animales , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Ratones , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Vibrisas/fisiología
7.
Elife ; 102021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33648630

RESUMEN

A citizen science approach to research has shown that the improvements in mood and cognition associated with psychedelic microdosing are likely due to a placebo effect.


Asunto(s)
Alucinógenos , Afecto , Cognición
8.
Nature ; 589(7842): 474-479, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33299186

RESUMEN

The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals1. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine-like those of other psychedelic compounds-are long-lasting2, which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling3,4. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog-a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.


Asunto(s)
Conducta Adictiva/tratamiento farmacológico , Diseño de Fármacos , Ibogaína/análogos & derivados , Ibogaína/efectos adversos , Alcoholismo/tratamiento farmacológico , Animales , Antidepresivos/farmacología , Arritmias Cardíacas/inducido químicamente , Técnicas de Química Sintética , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Alucinógenos/efectos adversos , Dependencia de Heroína/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Seguridad del Paciente , Receptor de Serotonina 5-HT2A/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Natación , Tabernaemontana/química
9.
Cell ; 183(7): 1986-2002.e26, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33333022

RESUMEN

Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which has been hampered by our inability to monitor serotonin release and transport with high spatial and temporal resolution. We developed and applied a binding-pocket redesign strategy, guided by machine learning, to create a high-performance, soluble, fluorescent serotonin sensor (iSeroSnFR), enabling optical detection of millisecond-scale serotonin transients. We demonstrate that iSeroSnFR can be used to detect serotonin release in freely behaving mice during fear conditioning, social interaction, and sleep/wake transitions. We also developed a robust assay of serotonin transporter function and modulation by drugs. We expect that both machine-learning-guided binding-pocket redesign and iSeroSnFR will have broad utility for the development of other sensors and in vitro and in vivo serotonin detection, respectively.


Asunto(s)
Evolución Molecular Dirigida , Aprendizaje Automático , Serotonina/metabolismo , Algoritmos , Secuencia de Aminoácidos , Amígdala del Cerebelo/fisiología , Animales , Conducta Animal , Sitios de Unión , Encéfalo/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Fotones , Unión Proteica , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sueño/fisiología , Vigilia/fisiología
10.
J Med Chem ; 63(3): 1142-1155, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-31977208

RESUMEN

Ketamine, N,N-dimethyltryptamine (DMT), and other psychoplastogens possess enormous potential as neurotherapeutics due to their ability to potently promote neuronal growth. Here, we report the first-ever structure-activity relationship study with the explicit goal of identifying novel psychoplastogens. We have discovered several key features of the psychoplastogenic pharmacophore and used this information to develop N,N-dimethylaminoisotryptamine (isoDMT) psychoplastogens that are easier to synthesize, have improved physicochemical properties, and possess reduced hallucinogenic potential as compared to their DMT counterparts.


Asunto(s)
Alucinógenos/farmacología , N,N-Dimetiltriptamina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Alucinógenos/síntesis química , Alucinógenos/química , Ratones , Estructura Molecular , N,N-Dimetiltriptamina/síntesis química , N,N-Dimetiltriptamina/química , Relación Estructura-Actividad , Pez Cebra
11.
J Psychoactive Drugs ; 52(2): 113-122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31973684

RESUMEN

Anecdotal reports suggest that the administration of sub-hallucinogenic doses of psychedelic compounds on a chronic, intermittent schedule - a practice known as psychedelic microdosing - is becoming increasingly popular among young adults due to its purported ability to reduce symptoms of depression and anxiety while improving cognitive function and promoting social interaction. Using an anonymous online survey, we collected data from 2347 people to 1) assess the prevalence of psychedelic microdosing and characterize the demographics of microdosers, 2) determine whether microdosers associate the practice with changes in mood, cognitive function, social interaction, or physiology, and 3) investigate frequent motives for discontinuing the practice. Fifty-nine percent of respondents (NT = 2183) reported familiarity with the concept of psychedelic microdosing, with 17% (383 respondents, NT = 2200) having engaged in this practice. Microdosers attributed psychedelic microdosing with improving their mood, decreasing their anxiety, and enhancing their memory, attention, and sociability. The most frequently cited reasons for quitting microdosing (NT = 243) were the risks associated with taking an illegal substance (24.28%) and the difficulty of obtaining psychedelic compounds (22.63%). Overall, our findings suggest that psychedelic microdosing is relatively common and is subjectively associated with a broad spectrum of socio-affective, cognitive, and physical outcomes.


Asunto(s)
Síntomas Conductuales/tratamiento farmacológico , Cognición/efectos de los fármacos , Alucinógenos/administración & dosificación , Automanejo/estadística & datos numéricos , Adolescente , Adulto , Encuestas Epidemiológicas , Humanos , Prevalencia , Adulto Joven
12.
ACS Chem Neurosci ; 10(7): 3261-3270, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30829033

RESUMEN

Drugs capable of ameliorating symptoms of depression and anxiety while also improving cognitive function and sociability are highly desirable. Anecdotal reports have suggested that serotonergic psychedelics administered in low doses on a chronic, intermittent schedule, so-called "microdosing", might produce beneficial effects on mood, anxiety, cognition, and social interaction. Here, we test this hypothesis by subjecting male and female Sprague Dawley rats to behavioral testing following the chronic, intermittent administration of low doses of the psychedelic N,N-dimethyltryptamine (DMT). The behavioral and cellular effects of this dosing regimen were distinct from those induced following a single high dose of the drug. We found that chronic, intermittent, low doses of DMT produced an antidepressant-like phenotype and enhanced fear extinction learning without impacting working memory or social interaction. Additionally, male rats treated with DMT on this schedule gained a significant amount of body weight during the course of the study. Taken together, our results suggest that psychedelic microdosing may alleviate symptoms of mood and anxiety disorders, though the potential hazards of this practice warrant further investigation.


Asunto(s)
Afecto/efectos de los fármacos , Antidepresivos/uso terapéutico , Ansiedad/tratamiento farmacológico , Depresión/tratamiento farmacológico , Alucinógenos/administración & dosificación , N,N-Dimetiltriptamina/administración & dosificación , Animales , Antidepresivos/administración & dosificación , Conducta Animal/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Femenino , Alucinógenos/uso terapéutico , Masculino , N,N-Dimetiltriptamina/uso terapéutico , Ratas , Ratas Sprague-Dawley
13.
ACS Chem Neurosci ; 9(10): 2344-2357, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30036036

RESUMEN

Though relatively obscure, N, N-dimethyltryptamine (DMT) is an important molecule in psychopharmacology as it is the archetype for all indole-containing serotonergic psychedelics. Its structure can be found embedded within those of better-known molecules such as lysergic acid diethylamide (LSD) and psilocybin. Unlike the latter two compounds, DMT is ubiquitous, being produced by a wide variety of plant and animal species. It is one of the principal psychoactive components of ayahuasca, a tisane made from various plant sources that has been used for centuries. Furthermore, DMT is one of the few psychedelic compounds produced endogenously by mammals, and its biological function in human physiology remains a mystery. In this review, we cover the synthesis of DMT as well as its pharmacology, metabolism, adverse effects, and potential use in medicine. Finally, we discuss the history of DMT in chemical neuroscience and why this underappreciated molecule is so important to the field of psychedelic science.


Asunto(s)
Alucinógenos/farmacología , N,N-Dimetiltriptamina/farmacología , Animales , Banisteriopsis , Alucinógenos/historia , Alucinógenos/metabolismo , Alucinógenos/uso terapéutico , Historia del Siglo XX , Historia del Siglo XXI , Humanos , N,N-Dimetiltriptamina/historia , N,N-Dimetiltriptamina/metabolismo , N,N-Dimetiltriptamina/uso terapéutico , Preparaciones de Plantas
14.
Cell Rep ; 23(11): 3170-3182, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29898390

RESUMEN

Atrophy of neurons in the prefrontal cortex (PFC) plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders.


Asunto(s)
Antidepresivos/farmacología , Plasticidad Neuronal/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Femenino , Masculino , Microscopía Fluorescente , Neurogénesis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A/metabolismo , Receptor trkB/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
15.
ACS Chem Neurosci ; 9(7): 1582-1590, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29664276

RESUMEN

Depression and anxiety disorders are debilitating diseases resulting in substantial economic costs to society. Traditional antidepressants often take weeks to months to positively affect mood and are ineffective for about 30% of the population. Alternatives, such as ketamine, a dissociative anesthetic capable of producing hallucinations, and the psychoactive tisane ayahuasca, have shown great promise due to their fast-acting nature and effectiveness in treatment-resistant populations. Here, we investigate the effects of N, N-dimethyltryptamine (DMT), the principle hallucinogenic component of ayahuasca, in rodent behavioral assays relevant to anxiety and depression using adult, male, Sprague-Dawley rats. We find that while DMT elicits initial anxiogenic responses in several of these paradigms, its long-lasting effects tend to reduce anxiety by facilitating the extinction of cued fear memory. Furthermore, DMT reduces immobility in the forced swim test, which is a characteristic behavioral response induced by many antidepressants. Our results demonstrate that DMT produces antidepressant and anxiolytic behavioral effects in rodents, warranting further investigation of ayahuasca and classical psychedelics as treatments for depression and post-traumatic stress disorder.


Asunto(s)
Ansiolíticos/farmacología , Antidepresivos/farmacología , Trastornos de Ansiedad/tratamiento farmacológico , Trastorno Depresivo/tratamiento farmacológico , N,N-Dimetiltriptamina/farmacología , Animales , Condicionamiento Psicológico/efectos de los fármacos , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Miedo/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Ratas Endogámicas SHR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...