Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(28): 5956-5960, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38975898

RESUMEN

Ferrier photobromination enables direct synthetic access to valuable 5-C-bromosugars but has limitations that restrict its broader use. The reaction is typically conducted in CCl4 heated at reflux with irradiation by broad spectrum, energy-inefficient heat lamps. Herein, we demonstrate that the reaction proceeds rapidly and efficiently with PhCF3 as a safe and environmentally benign alternative to CCl4 at mild temperatures (≤40 °C) inside a compact photoreactor fitted with purple light-emitting diodes (LEDs).

2.
Chemistry ; 30(27): e202400681, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38417144

RESUMEN

The bulky ß-diketiminate ligand frameworks [BDIDCHP]- and [BDIDipp/Ar]- (BDI=[HC{C(Me)2N-Dipp/Ar}2]- (Dipp=2,6-diisopropylphenyl (Dipp); Ar=2,6-dicyclohexylphyenyl (DCHP) or 2,4,6-tricyclohexylphyenyl (TCHP)) have been developed for the kinetic stabilisation of the first europium (II) hydride complexes, [(BDIDCHP)Eu(µ-H)]2, [(BDIDipp/DCHP)Eu(µ-H)]2 and [(BDIDipp/TCHP)Eu(µ-H)]2, respectively. These complexes represent the first step beyond the current lanthanide(II) hydrides that are all based on ytterbium. Tuning the steric profile of ß-diketiminate ligands from a symmetrical to unsymmetrical disposition, enhanced solubility and stability in the solution-state. This provides the first opportunity to study the structure and bonding of these novel Eu(II) hydride complexes crystallographically, spectroscopically and computationally, with their preliminary reactivity investigated.

3.
Eur J Med Chem ; 250: 115143, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36841086

RESUMEN

Recent discoveries have demonstrated that the physiological function of bile acids extends to the regulation of diverse signaling processes through interactions with nuclear and G protein-coupled receptors, most notably the Farnesoid-X nuclear receptor (FXR) and the G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5). Targeting such signaling pathways pharmacologically, i.e. with bile acid-derived therapeutics, presents great potential for the treatment of various metabolic, inflammatory immune, liver, and neurodegenerative diseases. Here we report the discovery of two potent and selective TGR5 agonists (NZP196 and 917). These compounds are the taurine conjugates of 6α-ethyl-substituted 12ß-methyl-18-nor-bile acids with the side chain being located on the α-face of the steroid scaffold. The compounds emerged from a screening effort of a diverse library of 12ß-methyl-18-nor-bile acids that were synthesized from 12ß-methyl-18-nor-chenodeoxycholic acid and its C17-epimer. Upon testing for FXR activity, both compounds were found to be inactive, thus revealing selectivity for TGR5.


Asunto(s)
Ácidos y Sales Biliares , Receptores Acoplados a Proteínas G , Ácidos y Sales Biliares/farmacología , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal , Hígado/metabolismo , Ácido Quenodesoxicólico
4.
Molecules ; 27(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35408759

RESUMEN

Bile acid receptors have been identified as important targets for the development of new therapeutics to treat various metabolic and inflammatory diseases. The synthesis of new bile acid analogues can help elucidate structure-activity relationships and define compounds that activate these receptors selectively. Towards this, access to large quantities of a chenodeoxycholic acid derivative bearing a C-12 methyl and a C-13 to C-14 double bond provided an interesting scaffold to investigate the chemical manipulation of the C/D ring junction in bile acids. The reactivity of this alkene substrate with various zinc carbenoid species showed that those generated using the Furukawa methodology achieved selective α-cyclopropanation, whereas those generated using the Shi methodology reacted in an unexpected manner giving rise to a rearranged skeleton whereby the C ring has undergone contraction to form a novel spiro-furan ring system. Further derivatization of the cyclopropanated steroid included O-7 oxidation and epimerization to afford new bile acid derivatives for biological evaluation.


Asunto(s)
Ácidos y Sales Biliares , Ácido Quenodesoxicólico , Ácido Quenodesoxicólico/química , Oxidación-Reducción , Esteroides , Relación Estructura-Actividad
5.
Org Biomol Chem ; 20(17): 3511-3527, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35230376

RESUMEN

In the quest for new modulators of the Farnesoid-X (FXR) and Takeda G-protein-coupled (TGR5) receptors, bile acids are a popular candidate for drug development. Recently, bile acids endowed with a C16-hydroxy group emerged as ligands of FXR and TGR5 with remarkable agonistic efficacies. Inspired by these findings, we synthesised a series of C16-hydroxylated 12ß-methyl-18-nor-bile acid analogues from a Δ13(17)-12ß-methyl-18-nor-chenodeoxycholic acid intermediate (16), the synthesis of which we reported previously. The preparation of these aptly named 12ß-methyl-18-nor-avicholic acids (17, 18, 41 and 42) was accomplished via allylic oxidation at C16, hydrogenation of the C13→C17 double bond and selective reduction of the C16-carbonyl group. Described also are various side products which were isolated during the evaluation of methods to affect the initial allylic oxidation. In addition, C23-methyl modified 12ß-methyl-18-nor-bile acids with (48, 49, 51 and 52) and without a C16-hydroxy group (45, 46 and 55), were synthesized to enable comparison of biological activities between these compounds and their un-methylated counterparts. As a result of our investigations we identified (23R)-12ß,23-dimethyl-18-nor-chenodeoxycholic acid (46) and 12ß-methyl-17-epi-18-nor-chenodeoxycholic acid 53 as TGR5 ligands with EC50 values of 25 µM.


Asunto(s)
Ácidos y Sales Biliares , Ácido Quenodesoxicólico , Ácidos y Sales Biliares/farmacología , Ácido Quenodesoxicólico/análogos & derivados , Hidrogenación , Ligandos
6.
Arch Pharm (Weinheim) ; 355(5): e2100497, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35174898

RESUMEN

The quest for isoform-selective and specific ATP-competitive protein kinase inhibitors is of great interest, as inhibitors with these qualities will come with reduced toxicity and improved efficacy. However, creating such inhibitors is very challenging due to the high molecular similarity of kinases ATP active sites. To achieve selectivity for our casein kinase (CK) 1 inhibitor series, we elected to endow our previous CK1δ-hit, 3-(4-fluorophenyl)-5-isopropyl-4-(pyridin-4-yl)isoxazole (1), with chiral iminosugar scaffolds. These scaffolds were attached to C5 of the isoxazole ring, a position deemed favorable to facilitate binding interactions with the ribose pocket/solvent-open area of the ATP binding pocket of CK1δ. Here, we describe the synthesis of analogs of 1 ((-)-/(+)-34, (-)-/(+)-48), which were prepared in 13 steps from enantiomerically pure ethyl (3R,4S)- and ethyl (3S,4R)-1-benzyl-4-[(tert-butyldimethylsilyl)oxy]-5-oxopyrrolidine-3-carboxylate ((-)-11 and (+)-11), respectively. The synthesis involved the coupling of Weinreb amide-activated chiral pyrrolidine scaffolds with 4- and 2-fluoro-4-picoline and reaction of the resulting 4-picolyl ketone intermediates ((-)-/(+)-40 and (-)-/(+)-44) with 4-fluoro-N-hydroxybenzenecarboximidoyl chloride to form the desired isoxazole ring. The activity of the compounds against human CK1δ, -ε, and -α was assessed in recently optimized in vitro assays. Compound (-)-34 was the most active compound with IC50 values (CK1δ/ε) of 1/8 µM and displayed enhanced selectivity toward CK1δ.


Asunto(s)
Quinasa Idelta de la Caseína , Adenosina Trifosfato/metabolismo , Quinasa Idelta de la Caseína/química , Quinasa Idelta de la Caseína/metabolismo , Humanos , Isoxazoles/química , Isoxazoles/farmacología , Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad
7.
Biomolecules ; 13(1)2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36671460

RESUMEN

Parkinson's Disease is the most common neurodegenerative movement disorder globally, with prevalence increasing. There is an urgent need for new therapeutics which are disease-modifying rather than symptomatic. Mitochondrial dysfunction is a well-documented mechanism in both sporadic and familial Parkinson's Disease. Furthermore, ursodeoxycholic acid (UDCA) has been identified as a bile acid which leads to increased mitochondrial function in multiple in vitro and in vivo models of Parkinson's Disease. Here, we describe the synthesis of novel C-nor-D-homo bile acid derivatives and the 12-hydroxy-methylated derivative of lagocholic acid (7) and their biological evaluation in fibroblasts from patients with either sporadic or LRRK2 mutant Parkinson's Disease. These compounds boost mitochondrial function to a similar level or above that of UDCA in many assays; notable, however, is their ability to boost mitochondrial function to a higher level and at lower concentrations than UDCA specifically in the fibroblasts from LRRK2 patients. Our study indicates that novel bile acid chemistry could lead to the development of more efficacious bile acids which increase mitochondrial function and ultimately cellular health at lower concentrations proving attractive potential novel therapeutics for Parkinson's Disease.


Asunto(s)
Enfermedad de Parkinson , Humanos , Ácidos y Sales Biliares , Enfermedad de Parkinson/tratamiento farmacológico , Ácido Ursodesoxicólico/farmacología , Colanos/química
8.
J Med Chem ; 64(24): 18114-18142, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34878770

RESUMEN

Diffuse gastric cancer and lobular breast cancer are aggressive malignancies that are frequently associated with inactivating mutations in the tumor suppressor gene CDH1. Synthetic lethal (SL) vulnerabilities arising from CDH1 dysfunction represent attractive targets for drug development. Recently, SLEC-11 (1) emerged as a SL lead in E-cadherin-deficient cells. Here, we describe our efforts to optimize 1. Overall, 63 analogues were synthesized and tested for their SL activity toward isogenic mammary epithelial CDH1-deficient cells (MCF10A-CDH1-/-). Among the 26 compounds with greater cytotoxicity, AL-GDa62 (3) was four-times more potent and more selective than 1 with an EC50 ratio of 1.6. Furthermore, 3 preferentially induced apoptosis in CDH1-/- cells, and Cdh1-/- mammary and gastric organoids were significantly more sensitive to 3 at low micromolar concentrations. Thermal proteome profiling of treated MCF10A-CDH1-/- cell protein lysates revealed that 3 specifically inhibits TCOF1, ARPC5, and UBC9. In vitro, 3 inhibited SUMOylation at low micromolar concentrations.


Asunto(s)
Antineoplásicos/uso terapéutico , Descubrimiento de Drogas , Neoplasias Gástricas/tratamiento farmacológico , Antígenos CD/genética , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cadherinas/genética , Línea Celular Tumoral , Humanos , Mutación , Neoplasias Gástricas/patología
9.
J Am Chem Soc ; 143(42): 17666-17676, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34664502

RESUMEN

The isocitrate lyase paralogs of Mycobacterium tuberculosis (ICL1 and 2) are essential for mycobacterial persistence and constitute targets for the development of antituberculosis agents. We report that (2R,3S)-2-hydroxy-3-(nitromethyl)succinic acid (5-NIC) undergoes apparent retro-aldol cleavage as catalyzed by ICL1 to produce glyoxylate and 3-nitropropionic acid (3-NP), the latter of which is a covalent-inactivating agent of ICL1. Kinetic analysis of this reaction identified that 5-NIC serves as a robust and efficient mechanism-based inactivator of ICL1 (kinact/KI = (1.3 ± 0.1) × 103 M-1 s-1) with a partition ratio <1. Using enzyme kinetics, mass spectrometry, and X-ray crystallography, we identified that the reaction of the 5-NIC-derived 3-NP with the Cys191 thiolate of ICL1 results in formation of an ICL1-thiohydroxamate adduct as predicted. One aspect of the design of 5-NIC was to lower its overall charge compared to isocitrate to assist with cell permeability. Accordingly, the absence of the third carboxylate group will simplify the synthesis of pro-drug forms of 5-NIC for characterization in cell-infection models of M. tuberculosis.


Asunto(s)
Inhibidores Enzimáticos/química , Isocitratoliasa/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , Succinatos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Glioxilatos/química , Glioxilatos/metabolismo , Isocitratoliasa/química , Isocitratoliasa/metabolismo , Cinética , Modelos Químicos , Nitrocompuestos/química , Nitrocompuestos/metabolismo , Propionatos/química , Propionatos/metabolismo , Unión Proteica , Succinatos/síntesis química , Succinatos/metabolismo
10.
ACS Omega ; 6(38): 25019-25039, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34604682

RESUMEN

Decoupling the roles of the farnesoid X nuclear receptor and Takeda G-protein-coupled bile acid receptor 5 is essential for the development of novel bile acid therapeutics targeting metabolic and neurodegenerative diseases. Herein, we describe the synthesis of 12ß-methyl-18-nor-bile acids which may serve as probes in the search for new bile acid analogues with clinical applicability. A Nametkin-type rearrangement was applied to protected cholic acid derivatives, giving rise to tetra-substituted Δ13,14- and Δ13,17-unsaturated 12ß-methyl-18-nor-bile acid intermediates (24a and 25a). Subsequent catalytic hydrogenation and deprotection yielded 12ß-methyl-18-nor-chenodeoxycholic acid (27a) and its 17-epi-epimer (28a) as the two major reaction products. Optimization of the synthetic sequence enabled a chromatography-free route to prepare these bile acids at a multi-gram scale. In addition, the first cis-C-D ring-junctured bile acid and a new 14(13 → 12)-abeo-bile acid are described. Furthermore, deuteration experiments were performed to provide mechanistic insights into the formation of the formal anti-hydrogenation product 12ß-methyl-18-nor-chenodeoxycholic acid (27a).

11.
ACS Med Chem Lett ; 12(9): 1486-1492, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34531957

RESUMEN

A significant proportion of genetic disease cases arise from truncation of proteins caused by premature termination codons. In eukaryotic cells some aminoglycosides cause readthrough of premature termination codons during protein translation. Inducing readthrough of these codons can potentially be of therapeutic value in the treatment of numerous genetic diseases. A significant drawback to the repeated use of aminoglycosides as treatments is the lack of balance between their readthrough efficacy and toxicity. The synthesis and biological testing of designer aminoglycoside compounds is documented herein. We disclose the implementation of a strategy to reduce cellular toxicity and maintain readthrough activity of a library of compounds by modification of the overall cationic charge of the aminoglycoside scaffold through ring I modifications.

12.
Chemistry ; 27(52): 13144-13148, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34258796

RESUMEN

A dimeric ß-diketiminato ytterbium(II) hydride affects both the two-electron aromatization of 1,3,5,7-cyclooctatetraene (COT) and the more challenging two-electron reduction of polyaromatic hydrocarbons, including naphthalene (E0 =-2.60 V). Confirmed by Density Functional Theory calculations, these reactions proceed via consecutive polarized Yb-H/C=C insertion and deprotonation steps to provide the respective ytterbium (II) inverse sandwich complexes and hydrogen gas. These observations highlight the ability of a simple ytterbium(II) hydride to act as a powerful two-electron reductant at room temperature without the necessity of an external electron to initiate the reaction and avoiding radicaloid intermediates.

13.
J Org Chem ; 86(13): 8843-8850, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34126010

RESUMEN

3'-Deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP) is a novel antiviral molecule produced by the enzyme viperin as part of the innate immune response. ddhCTP has been shown to act as an obligate chain terminator of flavivirus and SARS-CoV-2 RNA-dependent RNA polymerases; however, further biophysical studies have been precluded by limited access to this promising antiviral. Herein, we report a robust and scalable synthesis of ddhCTP as well as the mono- and diphosphates ddhCMP and ddhCDP, respectively. Identification of a 2'-silyl ether protection strategy enabled selective synthesis and facile purification of the 5'-triphosphate, culminating in the preparation of ddhCTP on a gram scale.


Asunto(s)
Antivirales , COVID-19 , Citidina Trifosfato , Humanos , Proteínas , ARN Viral , SARS-CoV-2
14.
Nat Commun ; 12(1): 3147, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035284

RESUMEN

Although the nucleophilic alkylation of aromatics has recently been achieved with a variety of potent main group reagents, all of this reactivity is limited to a stoichiometric regime. We now report that the ytterbium(II) hydride, [BDIDippYbH]2 (BDIDipp = CH[C(CH3)NDipp]2, Dipp = 2,6-diisopropylphenyl), reacts with ethene and propene to provide the ytterbium(II) n-alkyls, [BDIDippYbR]2 (R = Et or Pr), both of which alkylate benzene at room temperature. Density functional theory (DFT) calculations indicate that this latter process operates through the nucleophilic (SN2) displacement of hydride, while the resultant regeneration of [BDIDippYbH]2 facilitates further reaction with ethene or propene and enables the direct catalytic (anti-Markovnikov) hydroarylation of both alkenes with a benzene C-H bond.

15.
Org Biomol Chem ; 18(25): 4728-4733, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32531013

RESUMEN

Late oxidation of hexose based building blocks or the use of uronic acid containing building blocks are two complementary strategies in the synthesis of glycosaminoglycans, the latter simplifiying the later stages of the process. Here we report the synthesis and evaluation of various disaccharide donors-uronic acids and their pyranose equivalents-for the synthesis of heparan sulfate, using an established protective group strategy. Hexose based "imidate" type donors perform well in the studied glycosylations, while their corresponding uronate esters fall short; a uronate ester thioglycoside performs equal to, if not better than, a hexose thioglycoside equivalent.

16.
J Neurosci ; 39(35): 6817-6828, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31235647

RESUMEN

Normal brain function requires proper targeting of synaptic-vesicle (SV) and active-zone components for presynaptic assembly and function. Whether and how synaptogenic signals (e.g., adhesion) at axo-dendritic contact sites promote axonal transport of presynaptic components for synapse formation, however, remain unclear. In this study, we show that Borderless (Bdl), a member of the conserved IgSF9-family trans-synaptic cell adhesion molecules, plays a novel and specific role in regulating axonal transport of SV components. Loss of bdl disrupts axonal transport of SV components in photoreceptor R8 axons, but does not affect the transport of mitochondria. Genetic mosaic analysis, transgene rescue and cell-type-specific knockdown indicate that Bdl is required both presynaptically and postsynaptically for delivering SV components in R8 axons. Consistent with a role for Bdl in R8 axons, loss of bdl causes a failure of R8-dependent phototaxis response to green light. bdl interacts genetically with imac encoding for a member of the UNC-104/Imac/KIF1A-family motor proteins, and is required for proper localization of Imac in R8 presynaptic terminals. Our results support a model in which Bdl mediates specific axo-dendritic interactions in a homophilic manner, which upregulates the Imac motor in promoting axonal transport of SV components for R8 presynaptic assembly and function.SIGNIFICANCE STATEMENT Whether and how synaptogenic adhesion at axo-dendritic contact sites regulates axonal transport of presynaptic components remain unknown. Here we show for the first time that a trans-synaptic adhesion molecule mediates specific interactions at axo-dendritic contact sites, which is required for upregulating the UNC-104/Imac/KIF1A motor in promoting axonal transport of synaptic-vesicle components for presynaptic assembly and function.


Asunto(s)
Transporte Axonal/fisiología , Visión de Colores/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Dendritas/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Sinapsis/metabolismo
17.
Arch Dis Child ; 104(5): 451-455, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30413485

RESUMEN

OBJECTIVE: We aimed to compare the severity of coronary artery abnormalities in Kawasaki disease between infants and older children. METHODS: We retrospectively reviewed and compared coronary artery dilation and aneurysm severity in infants <1 year of age with Kawasaki disease at our centre over a 10-year period with that observed in children ≥1 year of age in the Pediatric Heart Network Trial of Pulse Steroid Therapy in Kawasaki Disease. Coronary artery abnormalities were defined by z-scores according to American Heart Association guidelines. RESULTS: Of the 93 infants identified during the study period, 80 were treated with intravenous gamma globulin within the first 10 days of illness and were included for comparison to 170 children ≥1 year of age treated in the same time frame from the Pediatric Heart Network public database. The mean maximum z-score was significantly higher in infants compared with older children (3.37 vs 2.07, p<0.001). A higher incidence of medium and giant aneurysms was observed in infants compared with children ≥1 year of age (11% vs 3% for medium aneurysms, p=0.015; 8% vs <1% for giant aneurysms, p=0.005). CONCLUSIONS: Infants with Kawasaki disease have more severe coronary artery dilation compared with older children, and a higher prevalence of medium and giant aneurysms. Because adverse outcomes are closely linked to the maximal coronary artery diameter in Kawasaki disease, patients diagnosed as infants require very close long-term monitoring for cardiac complications.


Asunto(s)
Aneurisma Coronario/etiología , Síndrome Mucocutáneo Linfonodular/complicaciones , Factores de Edad , Niño , Preescolar , Aneurisma Coronario/patología , Diagnóstico Tardío , Resistencia a Medicamentos , Femenino , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Lactante , Masculino , Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome Mucocutáneo Linfonodular/terapia , Pronóstico , Estudios Retrospectivos , Factores de Riesgo , Índice de Severidad de la Enfermedad , Factores Sexuales , Factores de Tiempo
18.
J Labelled Comp Radiopharm ; 62(2): 67-76, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30548247

RESUMEN

Morquio A syndrome is an autosomal mucopolysaccharide storage disorder that leads to accumulation of keratan sulfate. Diagnosis of this disease can be aided by measuring the levels of keratan sulfate in the urine. This requires the liquid chromatography tandem mass spectrometry (LCMS/MS) measurement of sulfated N-acetyl-d-lactosamines in the urine after cleavage of the keratan sulfate with keratanase II. Quantification requires isotopically-labelled internal standards. The synthesis of these 13 C6 -labelled standards from 13 C6 -galactose and N-acetylglucosamine is described. The required protected disaccharide is prepared utilising a regioselective, high yielding ß-galactosylation of a partially protected glucosamine acceptor and an inverse addition protocol. Subsequent synthesis of the 13 C6 -labelled mono and disulfated N-acetyllactosamines was achieved in five and eight steps, respectively, from this intermediate to provide internal standards for the LCMS/MS quantification of keratan sulfate in urine.


Asunto(s)
Acetilgalactosamina/análogos & derivados , Espectrometría de Masas/métodos , Técnicas de Diagnóstico Molecular/métodos , Acetilgalactosamina/síntesis química , Isótopos de Carbono/química , Sulfato de Queratano/análisis , Sulfato de Queratano/orina , Mucopolisacaridosis IV/orina
19.
ACS Chem Biol ; 13(11): 3173-3183, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30339406

RESUMEN

Campylobacter jejuni is a Gram-negative bacterium responsible for food-borne gastroenteritis and associated with Guillain-Barré, Reiter, and irritable bowel syndromes. Antibiotic resistance in C. jejuni is common, creating a need for antibiotics with novel mechanisms of action. Menaquinone biosynthesis in C. jejuni uses the rare futalosine pathway, where 5'-methylthioadenosine nucleosidase ( CjMTAN) is proposed to catalyze the essential hydrolysis of adenine from 6-amino-6-deoxyfutalosine to form dehypoxanthinylfutalosine, a menaquinone precursor. The substrate specificity of CjMTAN is demonstrated to include 6-amino-6-deoxyfutalosine, 5'-methylthioadenosine, S-adenosylhomocysteine, adenosine, and 5'-deoxyadenosine. These activities span the catalytic specificities for the role of bacterial MTANs in menaquinone synthesis, quorum sensing, and S-adenosylmethionine recycling. We determined inhibition constants for potential transition-state analogues of CjMTAN. The best of these compounds have picomolar dissociation constants and were slow-onset tight-binding inhibitors. The most potent CjMTAN transition-state analogue inhibitors inhibited C. jejuni growth in culture at low micromolar concentrations, similar to gentamicin. The crystal structure of apoenzyme C. jejuni MTAN was solved at 1.25 Å, and five CjMTAN complexes with transition-state analogues were solved at 1.42 to 1.95 Å resolution. Inhibitor binding induces a loop movement to create a closed catalytic site with Asp196 and Ile152 providing purine leaving group activation and Arg192 and Glu12 activating the water nucleophile. With inhibitors bound, the interactions of the 4'-alkylthio or 4'-alkyl groups of this inhibitor family differ from the Escherichia coli MTAN structure by altered protein interactions near the hydrophobic pocket that stabilizes 4'-substituents of transition-state analogues. These CjMTAN inhibitors have potential as specific antibiotic candidates against C. jejuni.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , N-Glicosil Hidrolasas/antagonistas & inhibidores , Pirimidinas/farmacología , Pirroles/farmacología , Antibacterianos/química , Proteínas Bacterianas/química , Campylobacter jejuni/enzimología , Dominio Catalítico , Inhibidores Enzimáticos/química , Cinética , Estructura Molecular , N-Glicosil Hidrolasas/química , Pirimidinas/química , Pirroles/química , Relación Estructura-Actividad , Especificidad por Sustrato
20.
Echocardiography ; 35(10): 1692-1694, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30099768

RESUMEN

Kawasaki disease (KD) is a vasculitis that affects medium-sized arteries and can lead to coronary artery aneurysms. KD should be considered in any infant presenting with prolonged fever. Delaying treatment beyond Day 10 of fever portends a high risk of coronary artery aneurysms. Echocardiography is often necessary to diagnose KD in young infants who frequently present without classic physical examination findings. We report on a case of KD with giant aneurysms in a 2-month-old infant. A combination of transthoracic echocardiography and CT angiography was utilized in the diagnosis as well as in the management of this infant.


Asunto(s)
Angiografía por Tomografía Computarizada/métodos , Aneurisma Coronario/diagnóstico por imagen , Angiografía Coronaria/métodos , Ecocardiografía/métodos , Síndrome Mucocutáneo Linfonodular/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Diagnóstico Diferencial , Femenino , Humanos , Lactante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...