Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611871

RESUMEN

Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma cells are still not documented. Type I interferons (IFNs) are immunomodulatory cytokines endowed with antiviral and anti-proliferative actions and are used in the treatment of various pathologies such as different cancer forms (i.e., non-Hodgkin's lymphoma, melanoma, leukemia), hepatitis B, hepatitis C, multiple sclerosis, and many others. In this study, we investigated the effect of OEA and PEA on human neuroblastoma SH-SY5Y cells treated with IFNß. We focused on evaluating cell viability, cell proliferation, and cell signaling. Co-exposure to either OEA or PEA along with IFNß leads to increased apoptotic cell death marked by the cleavage of caspase 3 and poly-(ADP ribose) polymerase (PARP) alongside a decrease in survivin and IKBα levels. Moreover, we found that OEA and PEA did not affect IFNß signaling through the JAK-STAT pathway and the STAT1-inducible protein kinase R (PKR). OEA and PEA also increased the phosphorylation of p38 MAP kinase and programmed death-ligand 1 (PD-L1) expression both in full cell lysate and surface membranes. Furthermore, GW6471, a PPARα inhibitor, and the genetic silencing of the receptor were shown to lower PD-L1 and cleaved PARP levels. These results reveal the presence of a novel mechanism, independent of the IFNß-prompted pathway, by which OEA and PEA can directly impair cell survival, proliferation, and clonogenicity through modulating and potentiating the intrinsic apoptotic pathway in human SH-SY5Y cells.


Asunto(s)
Amidas , Endocannabinoides , Etanolaminas , Neuroblastoma , Ácidos Oléicos , Humanos , Neuroblastoma/tratamiento farmacológico , Antígeno B7-H1 , Quinasas Janus , PPAR alfa , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Factores de Transcripción STAT , Transducción de Señal , Apoptosis , Ácidos Palmíticos/farmacología
2.
Nutrients ; 15(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686862

RESUMEN

Anorexia nervosa (AN) is a complex eating disorder characterized by reduced caloric intake to achieve body-weight loss. Furthermore, over-exercise is commonly reported. In recent years, animal models of AN have provided evidence for neuroplasticity changes in specific brain areas of the mesocorticolimbic circuit, which controls a multitude of functions including reward, emotion, motivation, and cognition. The activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that modulates several forms of synaptic plasticity and has been linked to neuropsychiatric illness. Since the role of Arc in AN has never been investigated, in this study we evaluated whether the anorexic-like phenotype reproduced by the activity-based anorexia (ABA) model may impact its expression in selected brain regions that belong to the mesocorticolimbic circuit (i.e., prefrontal cortex, nucleus accumbens, and hippocampus). The marker of neuronal activation c-Fos was also assessed. We found that the expression of both markers increased in all the analyzed brain areas of ABA rats in comparison to the control groups. Moreover, a negative correlation between the density of Arc-positive cells and body-weight loss was found. Together, our findings suggest the importance of Arc and neuroplasticity changes within the brain circuits involved in dysfunctional behaviors associated with AN.


Asunto(s)
Anorexia Nerviosa , Animales , Ratas , Anorexia , Modelos Animales , Citoesqueleto , Pérdida de Peso
3.
Nutrients ; 15(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37432348

RESUMEN

The pathophysiology of Anorexia Nervosa (AN) has not been fully elucidated. Anaplastic lymphoma kinase (ALK) receptor is a protein-tyrosine kinase mainly known as a key oncogenic driver. Recently, a genetic deletion of ALK in mice has been found to increase energy expenditure and confers resistance to obesity in these animals, suggesting its role in the regulation of thinness. Here, we investigated the expression of ALK and the downstream intracellular pathways in female rats subjected to the activity-based anorexia (ABA) model, which reproduces important features of human AN. In the hypothalamic lysates of ABA rats, we found a reduction in ALK receptor expression, a downregulation of Akt phosphorylation, and no change in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation. After the recovery from body weight loss, ALK receptor expression returned to the control baseline values, while it was again suppressed during a second cycle of ABA induction. Overall, this evidence suggests a possible involvement of the ALK receptor in the pathophysiology of AN, that may be implicated in its stabilization, resistance, and/or its exacerbation.


Asunto(s)
Anorexia Nerviosa , Humanos , Femenino , Animales , Ratones , Ratas , Quinasa de Linfoma Anaplásico , Anorexia , Proteínas Tirosina Quinasas , Fosforilación
4.
Cells ; 11(17)2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36078036

RESUMEN

Parkinson's disease (PD) is a complex pathology causing a plethora of non-motor symptoms besides classical motor impairments, including cognitive disturbances. Recent studies in the PD human brain have reported microgliosis in limbic and neocortical structures, suggesting a role for neuroinflammation in the development of cognitive decline. Yet, the mechanism underlying the cognitive pathology is under investigated, mainly for the lack of a valid preclinical neuropathological model reproducing the disease's motor and non-motor aspects. Here, we show that the bilateral intracerebral infusion of pre-formed human alpha synuclein oligomers (H-αSynOs) within the substantia nigra pars compacta (SNpc) offers a valid model for studying the cognitive symptoms of PD, which adds to the classical motor aspects previously described in the same model. Indeed, H-αSynOs-infused rats displayed memory deficits in the two-trial recognition task in a Y maze and the novel object recognition (NOR) test performed three months after the oligomer infusion. In the anterior cingulate cortex (ACC) of H-αSynOs-infused rats the in vivo electrophysiological activity was altered and the expression of the neuron-specific immediate early gene (IEG) Npas4 (Neuronal PAS domain protein 4) and the AMPA receptor subunit GluR1 were decreased. The histological analysis of the brain of cognitively impaired rats showed a neuroinflammatory response in cognition-related regions such as the ACC and discrete subareas of the hippocampus, in the absence of any evident neuronal loss, supporting a role of neuroinflammation in cognitive decline. We found an increased GFAP reactivity and the acquisition of a proinflammatory phenotype by microglia, as indicated by the increased levels of microglial Tumor Necrosis Factor alpha (TNF-α) as compared to vehicle-infused rats. Moreover, diffused deposits of phospho-alpha synuclein (p-αSyn) and Lewy neurite-like aggregates were found in the SNpc and striatum, suggesting the spreading of toxic protein within anatomically interconnected areas. Altogether, we present a neuropathological rat model of PD that is relevant for the study of cognitive dysfunction featuring the disease. The intranigral infusion of toxic oligomeric species of alpha-synuclein (α-Syn) induced spreading and neuroinflammation in distant cognition-relevant regions, which may drive the altered neuronal activity underlying cognitive deficits.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Animales , Disfunción Cognitiva/metabolismo , Giro del Cíngulo/metabolismo , Giro del Cíngulo/patología , Humanos , Enfermedades Neuroinflamatorias , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Ratas , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo
5.
Molecules ; 27(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35807384

RESUMEN

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that might lead to very serious consequences. Notably, mental status change, brain confusion, and smell and taste disorders along with neurological complaints have been reported in patients infected with SARS-CoV-2. Furthermore, human brain tissue autopsies from COVID-19 patients show the presence of SARS-CoV-2 neuroinvasion, which correlates with the manifestation of meningitis, encephalitis, leukocyte infiltration, and neuronal damage. The olfactory mucosa has been suggested as a way of entry into the brain. SARS-CoV-2 infection is also known to provoke a hyper-inflammatory reaction with an exponential increase in the production of pro-inflammatory cytokines leading to systemic responses, even in the absence of direct infection of brain cells. Angiotensin-converting enzyme 2 (ACE2), the entry receptor of SARS-CoV-2, has been extensively demonstrated to be present in the periphery, neurons, and glial cells in different brain regions. To dissect the details of neurological complications and develop therapies helping COVID-19 survivors regain pre-infection quality of life, the development of robust clinical models is highly warranted. Several human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models have been developed and used for antiviral drug screening and vaccine development, as well as for better understanding of the molecular pathogenetic mechanisms of SARS-CoV-2 infection. In this review, we summarize recent results from the studies involving two such mouse models, namely K18- and CAG-hACE2 transgenics, to evaluate the direct and indirect impact of SARS-CoV-2 infection on the central nervous system.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Animales , Modelos Animales de Enfermedad , Melfalán , Ratones , Ratones Transgénicos , Peptidil-Dipeptidasa A , Calidad de Vida , gammaglobulinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA