Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 27(5): 109787, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38711453

RESUMEN

Depression is a devastating mood disorder that causes significant disability worldwide. Current knowledge of its pathophysiology remains modest and clear biological markers are lacking. Emerging evidence from human and animal models reveals persistent alterations in endoplasmic reticulum (ER) homeostasis, suggesting that ER stress-related signaling pathways may be targets for prevention and treatment. However, the neurobiological basis linking the pathways involved in depression-related ER stress remains unknown. Here, we report that an induced model of ER stress in mouse serotonin (5-HT) neurons is associated with reduced Egr1-dependent 5-HT cellular activity and 5-HT neurotransmission, resulting in neuroplasticity deficits in forebrain regions and a depressive-like phenotype. Ketamine administration engages downstream eIF2α signaling to trigger rapid neuroplasticity events that rescue the depressive-like effects. Collectively, these data identify ER stress in 5-HT neurons as a cellular pathway involved in the pathophysiology of depression and show that eIF2α is critical in eliciting ketamine's fast antidepressant effects.

2.
Brain ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769595

RESUMEN

Altered development and function of the prefrontal cortex (PFC) during adolescence is implicated in the origin of mental disorders. Deficits in the GABAergic system prominently contribute to these alterations. Nav1.1 is a voltage-gated Na+ channel critical for normal GABAergic activity. Here, we studied the role of Nav1.1 in PFC function and its potential relationship with the aetiology of mental disorders. Dysfunction of Nav1.1 activity in the medial PFC (mPFC) of adolescent mice enhanced the local excitation/inhibition ratio, resulting in epileptic activity, cognitive deficits and depressive-like behaviour in adulthood, along with a gene expression profile linked to major depressive disorder (MDD). Additionally, it reduced extracellular serotonin concentration in the dorsal raphe nucleus and brain-derived neurotrophic factor expression in the hippocampus, two MDD-related brain areas beyond the PFC. We also observed alterations in oscillatory activity and impaired hippocampal-mPFC coherence during sleep. Finally, we found reduced expression levels of SCN1A, the gene encoding Nav1.1, in post-mortem PFC samples from human MDD subjects. Collectively, our results provide a novel mechanistic framework linking adolescence-specific alterations in Nav1.1 function in the PFC to the pathogenesis of epilepsy and comorbidities such as cognitive impairment and depressive disorders.

3.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902322

RESUMEN

The reciprocal connectivity between the medial prefrontal cortex (mPFC) and the dorsal raphe nucleus (DR) is involved in mood control and resilience to stress. The infralimbic subdivision (IL) of the mPFC is the rodent equivalent of the ventral anterior cingulate cortex, which is intimately related to the pathophysiology/treatment of major depressive disorder (MDD). Boosting excitatory neurotransmission in the IL-but not in the prelimbic cortex, PrL-evokes depressive-like or antidepressant-like behaviors in rodents, which are associated with changes in serotonergic (5-HT) neurotransmission. We therefore examined the control of 5-HT activity by both of the mPFC subdivisions in anesthetized rats. The electrical stimulation of IL and PrL at 0.9 Hz comparably inhibited 5-HT neurons (53% vs. 48%, respectively). However, stimulation at higher frequencies (10-20 Hz) revealed a greater proportion of 5-HT neurons sensitive to IL than to PrL stimulation (86% vs. 59%, at 20 Hz, respectively), together with a differential involvement of GABAA (but not 5-HT1A) receptors. Likewise, electrical and optogenetic stimulation of IL and PrL enhanced 5-HT release in DR in a frequency-dependent manner, with greater elevations after IL stimulation at 20 Hz. Hence, IL and PrL differentially control serotonergic activity, with an apparent superior role of IL, an observation that may help to clarify the brain circuits involved in MDD.


Asunto(s)
Trastorno Depresivo Mayor , Núcleo Dorsal del Rafe , Ratas , Animales , Corteza Cerebral , Neuronas , Corteza Prefrontal/fisiología
4.
EMBO Mol Med ; 15(3): e15847, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36740977

RESUMEN

Tyrosine hydroxylase deficiency (THD) is a rare genetic disorder leading to dopaminergic depletion and early-onset Parkinsonism. Affected children present with either a severe form that does not respond to L-Dopa treatment (THD-B) or a milder L-Dopa responsive form (THD-A). We generated induced pluripotent stem cells (iPSCs) from THD patients that were differentiated into dopaminergic neurons (DAn) and compared with control-DAn from healthy individuals and gene-corrected isogenic controls. Consistent with patients, THD iPSC-DAn displayed lower levels of DA metabolites and reduced TH expression, when compared to controls. Moreover, THD iPSC-DAn showed abnormal morphology, including reduced total neurite length and neurite arborization defects, which were not evident in DAn differentiated from control-iPSC. Treatment of THD-iPSC-DAn with L-Dopa rescued the neuronal defects and disease phenotype only in THDA-DAn. Interestingly, L-Dopa treatment at the stage of neuronal precursors could prevent the alterations in THDB-iPSC-DAn, thus suggesting the existence of a critical developmental window in THD. Our iPSC-based model recapitulates THD disease phenotypes and response to treatment, representing a promising tool for investigating pathogenic mechanisms, drug screening, and personalized management.


Asunto(s)
Células Madre Pluripotentes Inducidas , Levodopa , Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Levodopa/uso terapéutico , Levodopa/metabolismo , Fenotipo , Humanos
5.
Front Pharmacol ; 13: 925740, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924056

RESUMEN

Background: Hypoxic-ischemic (HI) insults have important deleterious consequences in newborns, including short-term morbidity with neuromotor and cognitive disturbances. Cannabidiol (CBD) has demonstrated robust neuroprotective effects and shows anxiolytic/antidepressant effects as well. These effects are thought to be related to serotonin 5-HT1A receptor (5HT1AR) activation. We hereby aimed to study the role of 5HT1AR in the neuroprotective and behavioral effects of CBD in HI newborn piglets. Methods: 1-day-old piglets submitted to 30 min of hypoxia (FiO2 10%) and bilateral carotid occlusion were then treated daily with vehicle, CBD 1 mg/kg, or CBD with the 5HT1AR antagonist WAY 100635 1 mg/kg 72 h post-HI piglets were studied using amplitude-integrated EEG to detect seizures and a neurobehavioral test to detect neuromotor impairments. In addition, behavioral performance including social interaction, playful activity, hyperlocomotion, and motionless periods was assessed. Then, brain damage was assessed using histology (Nissl and TUNEL staining) and biochemistry (proton magnetic resonance spectroscopy studies. Results: HI led to brain damage as assessed by histologic and biochemistry studies, associated with neuromotor impairment and increased seizures. These effects were not observed in HI piglets treated with CBD. These beneficial effects of CBD were not reversed by the 5HT1AR antagonist, which is in contrast with previous studies demonstrating that 5HT1AR antagonists eliminated CBD neuroprotection as assessed 6 h after HI in piglets. HI led to mood disturbances, with decreased social interaction and playfulness and increased hyperlocomotion. Mood disturbances were not observed in piglets treated with CBD, but in this case, coadministration of the 5HT1AR antagonist eliminates the beneficial effects of CBD. Conclusion: CBD prevented HI-induced mood disturbances in newborn piglets by acting on 5HT1AR. However, 5HT1AR activation seems to be necessary for CBD neuroprotection only in the first hours after HI.

6.
STAR Protoc ; 3(2): 101445, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35707681

RESUMEN

Here, we present an optimized protocol for generating a mouse model overexpressing human α-synuclein in dopamine (DA) neurons driven by an adeno-associated viral (AAV) vector and for the examination of the benefit of an antisense oligonucleotide (ASO)-based therapy on DA neurotransmission under Parkinson's disease (PD)-like conditions. We describe AAV injection, followed by implantation of an osmotic minipump for ASO delivery and a guide cannula for microdialysis to measure DA release. This protocol can be used to evaluate oligonucleotide-based therapies for PD. For complete details on the use and execution of this protocol, please refer to Alarcón-Arís et al. (2020).


Asunto(s)
Enfermedad de Parkinson , Animales , Modelos Animales de Enfermedad , Dopamina/fisiología , Neuronas Dopaminérgicas , Ratones , Oligonucleótidos , Oligonucleótidos Antisentido/uso terapéutico , Enfermedad de Parkinson/genética
7.
Transl Psychiatry ; 12(1): 79, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210396

RESUMEN

Anxiety and depression affect 35-50% of patients with Parkinson's disease (PD), often precede the onset of motor symptoms, and have a negative impact on their quality of life. Dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD and contributes to a variety of non-motor symptoms. Furthermore, α-synuclein (α-Syn) aggregates were identified in raphe nuclei in the early stages of the disease. However, there are very few animal models of PD-related neuropsychiatric disorders. Here, we develop a new mouse model of α-synucleinopathy in the 5-HT system that mimics prominent histopathological and neuropsychiatric features of human PD. We showed that adeno-associated virus (AAV5)-induced overexpression of wild-type human α-Syn (h-α-Syn) in raphe 5-HT neurons triggers progressive accumulation, phosphorylation, and aggregation of h-α-Syn protein in the 5-HT system. Specifically, AAV5-injected mice displayed axonal impairment in the output brain regions of raphe neurons, and deficits in brain-derived neurotrophic factor (BDNF) expression and 5-HT neurotransmission, resulting in a depressive-like phenotype. Intracerebroventricular treatment with an indatraline-conjugated antisense oligonucleotide (IND-ASO) for four weeks induced an effective and safe reduction of h-α-Syn synthesis in 5-HT neurons and its accumulation in the forebrain, alleviating early deficits of 5-HT function and improving the behavioural phenotype. Altogether, our findings show that α-synucleinopathy in 5-HT neurons negatively affects brain circuits that control mood and emotions, resembling the expression of neuropsychiatric symptoms occurring at the onset of PD. Early preservation of 5-HT function by reducing α-Syn synthesis/accumulation may alleviate PD-related depressive symptoms.


Asunto(s)
Serotonina , alfa-Sinucleína , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas/metabolismo , Oligonucleótidos/metabolismo , Oligonucleótidos/farmacología , Fenotipo , Prosencéfalo/metabolismo , Calidad de Vida , Serotonina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacología
8.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163729

RESUMEN

The synuclein family consists of α-, ß-, and γ-Synuclein (α-Syn, ß-Syn, and γ-Syn) expressed in the neurons and concentrated in synaptic terminals. While α-Syn is at the center of interest due to its implication in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies, limited information exists on the other members. The current study aimed at investigating the biological role of γ-Syn controlling the midbrain dopamine (DA) function. We generated two different mouse models with: (i) γ-Syn overexpression induced by an adeno-associated viral vector and (ii) γ-Syn knockdown induced by a ligand-conjugated antisense oligonucleotide, in order to modify the endogenous γ-Syn transcription levels in midbrain DA neurons. The progressive overexpression of γ-Syn decreased DA neurotransmission in the nigrostriatal and mesocortical pathways. In parallel, mice evoked motor deficits in the rotarod and impaired cognitive performance as assessed by novel object recognition, passive avoidance, and Morris water maze tests. Conversely, acute γ-Syn knockdown selectively in DA neurons facilitated forebrain DA neurotransmission. Importantly, modifications in γ-Syn expression did not induce the loss of DA neurons or changes in α-Syn expression. Collectively, our data strongly suggest that DA release/re-uptake processes in the nigrostriatal and mesocortical pathways are partially dependent on substantia nigra pars compacta /ventral tegmental area (SNc/VTA) γ-Syn transcription levels, and are linked to modulation of DA transporter function, similar to α-Syn.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , gamma-Sinucleína , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones , Sustancia Negra/metabolismo , Transmisión Sináptica/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , gamma-Sinucleína/genética , gamma-Sinucleína/metabolismo
10.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805843

RESUMEN

α-Synuclein (α-Syn) protein is involved in the pathogenesis of Parkinson's disease (PD). Point mutations and multiplications of the α-Syn, which encodes the SNCA gene, are correlated with early-onset PD, therefore the reduction in a-Syn synthesis could be a potential therapy for PD if delivered to the key affected neurons. Several experimental strategies for PD have been developed in recent years using oligonucleotide therapeutics. However, some of them have failed or even caused neuronal toxicity. One limiting step in the success of oligonucleotide-based therapeutics is their delivery to the brain compartment, and once there, to selected neuronal populations. Previously, we developed an indatraline-conjugated antisense oligonucleotide (IND-1233-ASO), that selectively reduces α-Syn synthesis in midbrain monoamine neurons of mice, and nonhuman primates. Here, we extended these observations using a transgenic male mouse strain carrying both A30P and A53T mutant human α-Syn (A30P*A53T*α-Syn). We found that A30P*A53T*α-Syn mice at 4-5 months of age showed 3.5-fold increases in human α-Syn expression in dopamine (DA) and norepinephrine (NE) neurons of the substantia nigra pars compacta (SNc) and locus coeruleus (LC), respectively, compared with mouse α-Syn levels. In parallel, transgenic mice exhibited altered nigrostriatal DA neurotransmission, motor alterations, and an anxiety-like phenotype. Intracerebroventricular IND-1233-ASO administration (100 µg/day, 28 days) prevented the α-Syn synthesis and accumulation in the SNc and LC, and recovered DA neurotransmission, although it did not reverse the behavioral phenotype. Therefore, the present therapeutic strategy based on a conjugated ASO could be used for the selective inhibition of α-Syn expression in PD-vulnerable monoamine neurons, showing the benefit of the optimization of ASO molecules as a disease modifying therapy for PD and related α-synucleinopathies.


Asunto(s)
Glicoconjugados/genética , Oligonucleótidos Antisentido/administración & dosificación , Enfermedad de Parkinson/terapia , Mutación Puntual , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/genética , Sustitución de Aminoácidos , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Glicoconjugados/administración & dosificación , Glicoconjugados/metabolismo , Humanos , Indanos/administración & dosificación , Indanos/química , Indanos/metabolismo , Inyecciones Intraventriculares , Locus Coeruleus/metabolismo , Locus Coeruleus/patología , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patología , Metilaminas/administración & dosificación , Metilaminas/química , Metilaminas/metabolismo , Ratones , Ratones Transgénicos , Norepinefrina/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Transmisión Sináptica , alfa-Sinucleína/metabolismo
11.
Transl Psychiatry ; 10(1): 427, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303736

RESUMEN

Acute ketamine administration evokes rapid and sustained antidepressant effects in treatment-resistant patients. However, ketamine also produces transient perceptual disturbances similarly to those evoked by other non-competitive NMDA-R antagonists like phencyclidine (PCP). Although the brain networks involved in both ketamine actions are not fully understood, PCP and ketamine activate thalamo-cortical networks after NMDA-R blockade in GABAergic neurons of the reticular thalamic nucleus (RtN). Given the involvement of thalamo-cortical networks in processing sensory information, these networks may underlie psychotomimetic action. Since the GluN2C subunit is densely expressed in the thalamus, including the RtN, we examined the dependence of psychotomimetic and antidepressant-like actions of ketamine on the presence of GluN2C subunits, using wild-type and GluN2C knockout (GluN2CKO) mice. Likewise, since few studies have investigated ketamine's effects in females, we used mice of both sexes. GluN2C deletion dramatically reduced stereotyped (circling) behavior induced by ketamine in male and female mice, while the antidepressant-like effect was fully preserved in both genotypes and sexes. Despite ketamine appeared to induce similar effects in both sexes, some neurobiological differences were observed between male and female mice regarding c-fos expression in thalamic nuclei and cerebellum, and glutamate surge in prefrontal cortex. In conclusion, the GluN2C subunit may discriminate between antidepressant-like and psychotomimetic actions of ketamine. Further, the abundant presence of GluN2C subunits in the cerebellum and the improved motor coordination of GluN2CKO mice after ketamine treatment suggest the involvement of cerebellar NMDA-Rs in some behavioral actions of ketamine.


Asunto(s)
Ketamina , Animales , Antidepresivos/farmacología , Femenino , Neuronas GABAérgicas , Humanos , Ketamina/farmacología , Masculino , Ratones , Fenciclidina/farmacología , Receptores de N-Metil-D-Aspartato
12.
Elife ; 92020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33016873

RESUMEN

Huntington's disease (HD) is a neurological disorder characterized by motor disturbances. HD pathology is most prominent in the striatum, the central hub of the basal ganglia. The cerebral cortex is the main striatal afferent, and progressive cortico-striatal disconnection characterizes HD. We mapped striatal network dysfunction in HD mice to ultimately modulate the activity of a specific cortico-striatal circuit to ameliorate motor symptoms and recover synaptic plasticity. Multimodal MRI in vivo indicates cortico-striatal and thalamo-striatal functional network deficits and reduced glutamate/glutamine ratio in the striatum of HD mice. Moreover, optogenetically-induced glutamate release from M2 cortex terminals in the dorsolateral striatum (DLS) was undetectable in HD mice and striatal neurons show blunted electrophysiological responses. Remarkably, repeated M2-DLS optogenetic stimulation normalized motor behavior in HD mice and evoked a sustained increase of synaptic plasticity. Overall, these results reveal that selective stimulation of the M2-DLS pathway can become an effective therapeutic strategy in HD.


Asunto(s)
Corteza Cerebral , Cuerpo Estriado , Estimulación Eléctrica , Enfermedad de Huntington/fisiopatología , Animales , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Corteza Cerebral/efectos de la radiación , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Cuerpo Estriado/efectos de la radiación , Ácido Glutámico/metabolismo , Ratones , Actividad Motora/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Optogenética
13.
EBioMedicine ; 59: 102944, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32810825

RESUMEN

BACKGROUND: Progressive neuronal death in monoaminergic nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson's disease (PD). Given that α-synuclein may be an early mediator of the pathological cascade that ultimately leads to neurodegeneration, decreased α-synuclein synthesis will abate neurotoxicity if delivered to the key affected neurons. METHODS: We used a non-viral gene therapy based on a new indatraline-conjugated antisense oligonucleotide (IND-ASO) to disrupt the α-synuclein mRNA transcription selectively in monoamine neurons of a PD-like mouse model and elderly nonhuman primates. Molecular, cell biology, histological, neurochemical and behavioral assays were performed. FINDINGS: Intracerebroventricular and intranasal IND-ASO administration for four weeks in a mouse model with AAV-mediated wild-type human α-synuclein overexpression in dopamine neurons prevented the synthesis and accumulation of α-synuclein in the connected brain regions, improving dopamine neurotransmission. Likewise, the four-week IND-ASO treatment led to decreased levels of endogenous α-synuclein protein in the midbrain monoamine nuclei of nonhuman primates, which are affected early in PD. CONCLUSIONS: The inhibition of α-synuclein production in dopamine neurons and its accumulation in cortical/striatal projection areas may alleviate the early deficits of dopamine function, showing the high translational value of antisense oligonucleotides as a disease modifying therapy for PD and related synucleinopathies. FUNDING: Grants SAF2016-75797-R, RTC-2014-2812-1 and RTC-2015-3309-1, Ministry of Economy and Competitiveness (MINECO) and European Regional Development Fund (ERDF), UE; Grant ID 9238, Michael J. Fox Foundation; and Centres for Networked Biomedical Research on Mental Health (CIBERSAM), and on Neurodegenerative Diseases (CIBERNED).


Asunto(s)
Neuronas/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animales , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/genética , Haplorrinos , Humanos , Inmunohistoquímica , Masculino , Ratones , Prueba del Laberinto Acuático de Morris , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/terapia , Transmisión Sináptica , Resultado del Tratamiento
14.
ACS Chem Neurosci ; 10(7): 3318-3326, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31244055

RESUMEN

Depression is a chronic and debilitating illness that interferes severely with many human behaviors, and is the leading cause of disability in the world. There is data suggesting that deficits in serotonin neurotransmission can contribute to the development of depression. Indeed, >90% of prescribed antidepressant drugs act by increasing serotonergic transmission at the synapse. However, this increase is offset by a negative feedback operating at the level of the cell body of the serotonin neurons in the raphe nuclei. In the present work, we demonstrate: first, the intracortical infusion of ketamine induced an antidepressant-like effect in the forced swim test, comparable to that produced by systemic ketamine; second, systemic and intracortical ketamine increased serotonin and noradrenaline efflux in the prefrontal cortex, but not in the dorsal raphe nucleus; third, systemic and intracortical administration of ketamine increased the efflux of glutamate in the prefrontal cortex and dorsal raphe nucleus; fourth, systemic ketamine did not alter the functionality of 5-HT1A receptors in the dorsal raphe nucleus. Taken together, these findings suggest that the antidepressant-like effects of ketamine are caused by the stimulation of the prefrontal projection to the dorsal raphe nucleus and locus coeruleus caused by an elevated glutamate in the medial prefrontal cortex, which would stimulate release of serotonin and noradrenaline in the same area. The impact of both monoamines in the antidepressant response to ketamine seems to have different time frames.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Núcleo Dorsal del Rafe/efectos de los fármacos , Ketamina/farmacología , Norepinefrina/metabolismo , Neuronas Serotoninérgicas/efectos de los fármacos , Serotonina/metabolismo , Animales , Antidepresivos/uso terapéutico , Depresión/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Ácido Glutámico/metabolismo , Ketamina/uso terapéutico , Masculino , Actividad Motora/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Receptor de Serotonina 5-HT1A/metabolismo , Neuronas Serotoninérgicas/metabolismo
15.
Pediatr Res ; 85(4): 539-545, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30675020

RESUMEN

BACKGROUND: Newborn pigs offer theoretical advantages for studying newborn hypoxic-ischemic (HI) brain damage because of a development and structure similar to the human brain. However, the correlation between functional features and actual HI brain damage has not been reported. METHODS: Newborn pigs were examined daily for 3 days after a HI insult using amplitude-integrated EEG (aEEG), and a neurobehavioral score enriched with stress and social and object interaction-driven activity evaluation. Brain damage was then assessed using histologic, immunohistochemical, and proton magnetic resonance spectroscopy studies. Brain concentration of several neurotransmitters was determined by HPLC. RESULTS: HI insult led to aEEG amplitude decrease, muscle tone and activity impairment, eating disorders, poor environmental interaction, and increased motionless periods. Basal aEEG amplitude, muscle tone, and general behavior were the best predictive items for histological and biochemical (lactate/N-acetylaspartate ratio) brain damage. Hyperexcitable response to stress correlated inversely with brain damage. Motionless time, which correlated with brain damage severity, was inversely related to brain concentration of dopamine and norepinephrine. CONCLUSION: Standard neurologic examination of brain activity and motor and behavioral performance of newborn pigs is a valuable tool to assess HI brain damage, thus offering a powerful translational model for HI brain damage pathophysiology and management studies.


Asunto(s)
Electroencefalografía/métodos , Hipoxia-Isquemia Encefálica/patología , Examen Neurológico , Animales , Hipoxia-Isquemia Encefálica/fisiopatología , Índice de Severidad de la Enfermedad , Análisis de Supervivencia , Porcinos
16.
Neuropharmacology ; 143: 10-19, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30201211

RESUMEN

Serotonin2A receptors and glutamate signaling have been implicated in the pathophysiology and treatment of compulsive spectrum disorders. Schedule-Induced Polydipsia (SIP), characterized by excessive drinking under intermittent food reinforcement schedules, is a valid model for studying the compulsive phenotype in rats. We explored the expression, function, and neurochemistry of 5-HT2A receptors in the frontal cortex (FC) of rats with individual differences to compulsivity. Rats were selected for high (HD) versus low (LD) drinking on SIP. First, we measured 5-HT2A, 5-HT1A, and mGlu2/3 receptors and serotonin transporter binding in different brain regions. Second, we assessed the effect of microinfusion into the medial prefrontal cortex (mPFC) of the 5-HT2A/C receptor agonist DOI, the mGlu2/3 agonist LY379268, and the combination of DOI with the 5-HT2A receptor antagonist M100907 and the 5-HT2C receptor antagonist SB242084. Finally, we measured the serotonin and glutamate efflux in mPFC in basal condition and after DOI local application. The compulsive HD rats showed a specific reduction of 5-HT2A receptor binding in FC compared to LD rats. The highest dose of DOI reduced compulsive drinking in HD rats on SIP, whereas LY379268 did not induce any significant effect. The 5-HT2A receptor antagonist M100907 reversed the DOI induced reduction on compulsive drinking in HD rats while blocking the 5-HT2C receptor did not affect SIP. Compulsive HD rats showed increased serotonin and decreased glutamate efflux in basal conditions that were modified by the DOI application. These findings indicate that reduced 5-HT2A receptor binding and glutamate neurochemical mechanisms may underlie compulsive behavior vulnerability.


Asunto(s)
Conducta Compulsiva/metabolismo , Conducta de Ingestión de Líquido/fisiología , Ácido Glutámico/metabolismo , Corteza Prefrontal/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Aminoácidos/farmacología , Anfetaminas/farmacología , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Conducta Compulsiva/tratamiento farmacológico , Conducta de Ingestión de Líquido/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Fluorobencenos/farmacología , Masculino , Piperidinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Distribución Aleatoria , Ratas Wistar , Receptor de Serotonina 5-HT2C/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología
17.
Neuropharmacology ; 108: 91-102, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27108934

RESUMEN

Deep brain stimulation (DBS) is a treatment that has shown some efficacy in treatment-resistant depression. In particular, DBS of the subcallosal cingulate gyrus (Brodmann's area 25, Cg25) has been successfully applied to treat refractory depression. In the rat, we have demonstrated that DBS applied to infralimbic (IL) cortex elevates the levels of glutamate and monoamines in the prefrontal cortex, and requires the stimulation of cortical α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors for its antidepressant-like effects. However, the molecular targets of IL DBS are not fully known. To gain insight into these pathways, we have investigated whether IL DBS is able to reverse the behavioral, biochemical and molecular changes exhibited by the olfactory bulbectomized (OBX) rat. Our results revealed that 1 h IL DBS diminished hyperlocomotion, hyperemotionality and anhedonia, and increased social interaction shown by the OBX rats. Further, IL DBS increased prefrontal efflux of glutamate and serotonin in both sham-operated and OBX rats. With regard to molecular targets, IL DBS increases the synthesis of brain-derived neurotrophic factor (BDNF) and the GluA1 AMPA receptor subunit, and stimulates the Akt/mammalian target of rapamycin (mTOR) as well as the AMPA receptor/c-AMP response element binding (CREB) pathways. Temsirolimus, a known in vivo mTOR blocker, suppressed the antidepressant-like effect of IL DBS in naïve rats in the forced swim test, thus demonstrating for the first time that mTOR signaling is required for the antidepressant-like effects of IL DBS, which is in line with the antidepressant response of other rapid-acting antidepressant drugs.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Depresión/metabolismo , Relaciones Interpersonales , Corteza Prefrontal/química , Corteza Prefrontal/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Depresión/cirugía , Masculino , Bulbo Olfatorio/química , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/cirugía , Corteza Prefrontal/cirugía , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar
18.
Neuropharmacology ; 103: 16-26, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26711860

RESUMEN

Cannabidiol (CBD), the main non-psychotomimetic component of marihuana, exhibits anxiolytic-like properties in many behavioural tests, although its potential for treating major depression has been poorly explored. Moreover, the mechanism of action of CBD remains unclear. Herein, we have evaluated the effects of CBD following acute and chronic administration in the olfactory bulbectomy mouse model of depression (OBX), and investigated the underlying mechanism. For this purpose, we conducted behavioural (open field and sucrose preference tests) and neurochemical (microdialysis and autoradiography of 5-HT1A receptor functionality) studies following treatment with CBD. We also assayed the pharmacological antagonism of the effects of CBD to dissect out the mechanism of action. Our results demonstrate that CBD exerts fast and maintained antidepressant-like effects as evidenced by the reversal of the OBX-induced hyperactivity and anhedonia. In vivo microdialysis revealed that the administration of CBD significantly enhanced serotonin and glutamate levels in vmPFCx in a different manner depending on the emotional state and the duration of the treatment. The potentiating effect upon neurotransmitters levels occurring immediately after the first injection of CBD might underlie the fast antidepressant-like actions in OBX mice. Both antidepressant-like effect and enhanced cortical 5-HT/glutamate neurotransmission induced by CBD were prevented by 5-HT1A receptor blockade. Moreover, adaptive changes in pre- and post-synaptic 5-HT1A receptor functionality were also found after chronic CBD. In conclusion, our findings indicate that CBD could represent a novel fast antidepressant drug, via enhancing both serotonergic and glutamate cortical signalling through a 5-HT1A receptor-dependent mechanism.


Asunto(s)
Ansiolíticos/administración & dosificación , Antidepresivos/administración & dosificación , Cannabidiol/administración & dosificación , Trastorno Depresivo/metabolismo , Ácido Glutámico/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Serotonina/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Bulbo Olfatorio/cirugía , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Transmisión Sináptica/efectos de los fármacos
19.
Psychopharmacology (Berl) ; 233(2): 295-308, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26497539

RESUMEN

RATIONALE: The apolipoprotein E (apoE) genotype influences cognitive performance in humans depending on age and sex. While the detrimental role of the apoE4 isoform on spatial learning and memory has been well-established in humans and rodents, less is known on its impact on the executive functions. OBJECTIVES: We aimed to evaluate the effect of apoE isoforms (apoE2, apoE3, apoE4) on visuospatial attention and inhibitory control performance in female transgenic mice, and to determine the neurochemical and neuropharmacological basis of this potential relationship. METHODS: Female mice carrying apoE2, apoE3, and apoE4 were trained in the five-choice serial reaction time task (5-CSRTT). Upon a stable performance, we manipulated the inter-trial interval and the stimulus duration to elicit impulsive responding and engage attention respectively. We further performed a pharmacological challenge by administering cholinergic and GABAergic agents. Finally, we analyzed the levels of brain amino acids and monoamines by using reversed phase high-performance liquid chromatography (HPLC). RESULTS: ApoE4 mice showed a deficient inhibitory control as revealed by increased perseveration and premature responding. When attention was challenged, apoE4 mice also showed a higher drop in accuracy. The adverse effect of scopolamine on the task was attenuated in apoE4 mice compared to apoE2 and apoE3. Furthermore, apoE4 mice showed less dopamine in the frontal cortex than apoE2 mice. CONCLUSIONS: We confirmed that the apoE genotype influences attention and inhibitory control in female transgenic mice. The influence of apoE isoforms in the brain neuromodulatory system may explain the cognitive and behavioral differences attributable to the genotype.


Asunto(s)
Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Atención/fisiología , Neurotransmisores/metabolismo , Desempeño Psicomotor/fisiología , Animales , Colinérgicos/farmacología , Dopamina/metabolismo , Función Ejecutiva , Femenino , GABAérgicos/farmacología , Humanos , Conducta Impulsiva , Inhibición Psicológica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Tiempo de Reacción/genética , Percepción Espacial
20.
Cereb Cortex ; 26(6): 2778-2789, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26088969

RESUMEN

Although deep brain stimulation (DBS) has been used with success in treatment-resistant depression, little is known about its mechanism of action. We examined the antidepressant-like activity of short (1 h) DBS applied to the infralimbic prefrontal cortex in the forced swim test (FST) and the novelty-suppressed feeding test (NSFT). We also used in vivo microdialysis to evaluate the release of glutamate, γ-aminobutyric acid, serotonin, dopamine, and noradrenaline in the prefrontal cortex and c-Fos immunohistochemistry to determine the brain regions activated by DBS. One hour of DBS of the infralimbic prefrontal cortex has antidepressant-like effects in FST and NSFT, and increases prefrontal efflux of glutamate, which would activate AMPA receptors (AMPARs). This effect is specific of the infralimbic area since it is not observed after DBS of the prelimbic subregion. The activation of prefrontal AMPARs would result in a stimulation of prefrontal output to the brainstem, thus increasing serotonin, dopamine, and noradrenaline in the prefrontal cortex. Further, the activation of prefrontal AMPARs is necessary and sufficient condition for the antidepressant response of 1 h DBS.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Trastorno Depresivo/metabolismo , Trastorno Depresivo/terapia , Corteza Prefrontal/metabolismo , Receptores AMPA/metabolismo , Animales , Trastorno Depresivo/patología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Inmunohistoquímica , Masculino , Microdiálisis , Norepinefrina/metabolismo , Corteza Prefrontal/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Wistar , Serotonina/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA