Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379619

RESUMEN

O-GlcNAc is a reversible post-translational modification found on serine and threonine residues of nucleocytoplasmic proteins. Four years ago, we released the O-GlcNAc Database ( oglcnac.mcw.edu ), a comprehensive catalog of O-GlcNAcylated proteins that has become one of the most cited resources in the field, with hundreds of unique users per month. We are now presenting an updated O-GlcNAc Database, which includes nearly 20,000 O-GlcNAcylated proteins and 48 species, marking substantial growth in data volume and scope. This paper presents the most noteworthy features implemented over the last year, often originating from feedback from the O-GlcNAc community. Among these features, we provide a brief overview of the database content, introduce our new protein viewer mode, and discuss the implementation of subcellular localization information and its applications in the O-GlcNAc score. We also provide an interface to use CytOVS, a tool designed to evaluate and sort O-GlcNAcome datasets derived from MS experiments. In conclusion, this new and improved O-GlcNAc Database represents a significant advancement in providing a comprehensive and expanded resource for researchers in the field of O-GlcNAc biology.

2.
Biomol NMR Assign ; 18(2): 263-267, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39249657

RESUMEN

The catalytic domain of the calcium-dependent endoribonuclease EndoU from Homo sapiens was expressed in E. coli with 13C and 15N labeling. A nearly complete assignment of backbone 1H, 15N, and 13C resonances was obtained, as well as a secondary structure prediction based on the assigned chemical shifts. The predicted secondary structures were almost identical to the published crystal structure of calcium-activated EndoU. This is the first NMR study of an eukaryotic member of the EndoU-like superfamily of ribonucleases.


Asunto(s)
Calcio , Endorribonucleasas , Resonancia Magnética Nuclear Biomolecular , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Humanos , Calcio/metabolismo , Isótopos de Nitrógeno , Estructura Secundaria de Proteína , Secuencia de Aminoácidos
3.
Res Sq ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39070628

RESUMEN

Ribonucleases (RNases) are ubiquitous enzymes that process or degrade RNA, essential for cellular functions and immune responses. The EndoU-like superfamily includes endoribonucleases conserved across bacteria, eukaryotes, and certain viruses, with an ancient evolutionary link to the ribonuclease A-like superfamily. Both bacterial EndoU and animal RNase A share a similar fold and function independently of cofactors. In contrast, the eukaryotic EndoU catalytic domain requires divalent metal ions for catalysis, possibly due to an N-terminal extension near the catalytic core. In this study, we used biophysical and computational techniques along with in vitro assays to investigate the calcium-dependent activation of human EndoU. We determined the crystal structure of EndoU bound to calcium and found that calcium binding remote from the catalytic triad triggers water-mediated intramolecular signaling and structural changes, activating the enzyme through allostery. Calcium-binding involves residues from both the catalytic core and the N-terminal extension, indicating that the N-terminal extension interacts with the catalytic core to modulate activity in response to calcium. Our findings suggest that similar mechanisms may be present across all eukaryotic EndoUs, highlighting a unique evolutionary adaptation that connects endoribonuclease activity to cellular signaling in eukaryotes.

4.
RSC Med Chem ; 15(4): 1109-1126, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665842

RESUMEN

In eukaryotic cells, RNA splicing is crucial for gene expression. Dysregulation of this process can result in incorrect mRNA processing, leading to aberrant gene expression patterns. Such abnormalities are implicated in many inherited diseases and cancers. Historically, antisense oligonucleotides, which bind to specific RNA targets, have been used to correct these splicing abnormalities. Despite their high specificity of action, these oligonucleotides have drawbacks, such as lack of oral bioavailability and the need for chemical modifications to enhance cellular uptake and stability. As a result, recent efforts focused on the development of small organic molecules that can correct abnormal RNA splicing event under disease conditions. This review discusses known and potential targets of these molecules, including RNA structures, trans-acting splicing factors, and the spliceosome - the macromolecular complex responsible for RNA splicing. We also rely on recent advances to discuss therapeutic applications of RNA-targeting small molecules in splicing correction. Overall, this review presents an update on strategies for RNA splicing modulation, emphasizing the therapeutic promise of small molecules.

5.
Chembiochem ; 25(9): e202300864, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38459794

RESUMEN

The U1 small ribonucleoprotein (U1 snRNP) plays a pivotal role in the intricate process of gene expression, specifically within nuclear RNA processing. By initiating the splicing reaction and modulating 3'-end processing, U1 snRNP exerts precise control over RNA metabolism and gene expression. This ribonucleoparticle is abundantly present, and its complex biogenesis necessitates shuttling between the nuclear and cytoplasmic compartments. Over the past three decades, extensive research has illuminated the crucial connection between disrupted U snRNP biogenesis and several prominent human diseases, notably various neurodegenerative conditions. The perturbation of U1 snRNP homeostasis has been firmly established in diseases such as Spinal Muscular Atrophy, Pontocerebellar hypoplasia, and FUS-mediated Amyotrophic Lateral Sclerosis. Intriguingly, compelling evidence suggests a potential correlation in Fronto-temporal dementia and Alzheimer's disease as well. Although the U snRNP biogenesis pathway is conserved across all eukaryotic cells, neurons, in particular, appear to be highly susceptible to alterations in spliceosome homeostasis. In contrast, other cell types exhibit a greater resilience to such disturbances. This vulnerability underscores the intricate relationship between U1 snRNP dynamics and the health of neuronal cells, shedding light on potential avenues for understanding and addressing neurodegenerative disorders.


Asunto(s)
Enfermedades Neurodegenerativas , Ribonucleoproteína Nuclear Pequeña U1 , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química
6.
Nucleic Acids Res ; 52(8): 4124-4136, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38554107

RESUMEN

Pharmacological modulation of RNA splicing by small molecules is an emerging facet of drug discovery. In this context, the SMN2 splicing modifier SMN-C5 was used as a prototype to understand the mode of action of small molecule splicing modifiers and propose the concept of 5'-splice site bulge repair. In this study, we combined in vitro binding assays and structure determination by NMR spectroscopy to identify the binding modes of four other small molecule splicing modifiers that switch the splicing of either the SMN2 or the HTT gene. Here, we determined the solution structures of risdiplam, branaplam, SMN-CX and SMN-CY bound to the intermolecular RNA helix epitope containing an unpaired adenine within the G-2A-1G+1U+2 motif of the 5'-splice site. Despite notable differences in their scaffolds, risdiplam, SMN-CX, SMN-CY and branaplam contact the RNA epitope similarly to SMN-C5, suggesting that the 5'-splice site bulge repair mechanism can be generalised. These findings not only deepen our understanding of the chemical diversity of splicing modifiers that target A-1 bulged 5'-splice sites, but also identify common pharmacophores required for modulating 5'-splice site selection with small molecules.


Asunto(s)
Diseño de Fármacos , Sitios de Empalme de ARN , Empalme del ARN , Humanos , Compuestos Azo , Modelos Moleculares , Conformación de Ácido Nucleico , Pirimidinas , Empalme del ARN/efectos de los fármacos , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
7.
Nat Commun ; 14(1): 7166, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935663

RESUMEN

The conserved SR-like protein Npl3 promotes splicing of diverse pre-mRNAs. However, the RNA sequence(s) recognized by the RNA Recognition Motifs (RRM1 & RRM2) of Npl3 during the splicing reaction remain elusive. Here, we developed a split-iCRAC approach in yeast to uncover the consensus sequence bound to each RRM. High-resolution NMR structures show that RRM2 recognizes a 5´-GNGG-3´ motif leading to an unusual mille-feuille topology. These structures also reveal how RRM1 preferentially interacts with a CC-dinucleotide upstream of this motif, and how the inter-RRM linker and the region C-terminal to RRM2 contribute to cooperative RNA-binding. Structure-guided functional studies show that Npl3 genetically interacts with U2 snRNP specific factors and we provide evidence that Npl3 melts U2 snRNA stem-loop I, a prerequisite for U2/U6 duplex formation within the catalytic center of the Bact spliceosomal complex. Thus, our findings suggest an unanticipated RNA chaperoning role for Npl3 during spliceosome active site formation.


Asunto(s)
Empalme del ARN , ARN , Conformación de Ácido Nucleico , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , ARN/metabolismo , ARN Nuclear Pequeño/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo
8.
Nat Commun ; 14(1): 5366, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666821

RESUMEN

Pharmacologic depletion of RNA-binding motif 39 (RBM39) using aryl sulfonamides represents a promising anti-cancer therapy but requires high levels of the adaptor protein DCAF15. Consequently, novel approaches to deplete RBM39 in an DCAF15-independent manner are required. Here, we uncover that RBM39 autoregulates via the inclusion of a poison exon into its own pre-mRNA and identify the cis-acting elements that govern this regulation. We also determine the NMR solution structures of RBM39's tandem RNA recognition motifs (RRM1 and RRM2) bound to their respective RNA targets, revealing how RRM1 recognises RNA stem loops whereas RRM2 binds specifically to single-stranded N(G/U)NUUUG. Our results support a model where RRM2 selects the 3'-splice site of a poison exon and the RRM3 and RS domain stabilise the U2 snRNP at the branchpoint. Our work provides molecular insights into RBM39-dependent 3'-splice site selection and constitutes a solid basis to design alternative anti-cancer therapies.


Asunto(s)
Neoplasias , Empalme del ARN , Empalme del ARN/genética , Motivos de Unión al ARN , Sitios de Empalme de ARN , Homeostasis , Factores de Empalme de ARN/genética , Neoplasias/genética
9.
J Phys Chem B ; 126(45): 9207-9221, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36348631

RESUMEN

RNA-protein complexes use diverse binding strategies, ranging from structurally well-defined interfaces to completely disordered regions. Experimental characterization of flexible segments is challenging and can be aided by atomistic molecular dynamics (MD) simulations. Here, we used an extended set of microsecond-scale MD trajectories (400 µs in total) to study two FUS-RNA constructs previously characterized by nuclear magnetic resonance (NMR) spectroscopy. The FUS protein contains a well-structured RNA recognition motif domain followed by a presumably disordered RGG tail that binds RNA stem-loop hairpins. Our simulations not only provide several suggestions complementing the experiments but also reveal major methodological difficulties in studies of such complex RNA-protein interfaces. Despite efforts to stabilize the binding via system-specific force-field adjustments, we have observed progressive distortions of the RNA-protein interface inconsistent with experimental data. We propose that the dynamics is so rich that its converged description is not achievable even upon stabilizing the system. Still, after careful analysis of the trajectories, we have made several suggestions regarding the binding. We identify substates in the RNA loops, which can explain the NMR data. The RGG tail localized in the minor groove remains disordered, sampling countless transient interactions with the RNA. There are long-range couplings among the different elements contributing to the recognition, which can lead to allosteric communication throughout the system. Overall, the RNA-FUS systems form dynamical ensembles that cannot be fully represented by single static structures. Thus, albeit imperfect, MD simulations represent a viable tool to investigate dynamic RNA-protein complexes.


Asunto(s)
Simulación de Dinámica Molecular , Motivo de Reconocimiento de ARN , ARN/química , Conformación Molecular , Proteínas/química
10.
Methods Mol Biol ; 2537: 247-262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35895269

RESUMEN

Alternative RNA splicing is an essential part of gene expression that not only increases the protein diversity of metazoan but also provides an additional layer of gene expression regulation. The U1 small ribonucleoparticle (U1 snRNP) plays an essential role in seeding spliceosome assembly and its binding on weak 5'-splice sites is regulated by transient interactions with splicing factors. Recent progress in allele specific splicing correction has shown the therapeutic potential offered by small molecule splicing modifiers that specifically promotes the recruitment of U1 snRNP to modulate alternative splicing and gene expression. Here, we described a method to reconstitute U1 snRNP in vitro and to study labile interactions with protein or synthetic splicing factors using solution state NMR spectroscopy. This approach allowed us to validate direct interactions between splicing regulators and U1 snRNP and could also be useful for the screening of small molecules acting on splicing regulation.


Asunto(s)
Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U1 , Empalme Alternativo , Animales , Espectroscopía de Resonancia Magnética , Proteínas/metabolismo , Precursores del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
11.
RNA Biol ; 19(1): 943-960, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35866748

RESUMEN

In Eukarya, immature mRNA transcripts (pre-mRNA) often contain coding sequences, or exons, interleaved by non-coding sequences, or introns. Introns are removed upon splicing, and further regulation of the retained exons leads to alternatively spliced mRNA. The splicing reaction requires the stepwise assembly of the spliceosome, a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs). This review focuses on the early stage of spliceosome assembly, when U1 snRNP defines each intron 5'-splice site (5'ss) in the pre-mRNA. We first introduce the splicing reaction and the impact of alternative splicing on gene expression regulation. Thereafter, we extensively discuss splicing descriptors that influence the 5'ss selection by U1 snRNP, such as sequence determinants, and interactions mediated by U1-specific proteins or U1 small nuclear RNA (U1 snRNA). We also include examples of diseases that affect the 5'ss selection by U1 snRNP, and discuss recent therapeutic advances that manipulate U1 snRNP 5'ss selectivity with antisense oligonucleotides and small-molecule splicing switches.


Asunto(s)
Precursores del ARN , Ribonucleoproteína Nuclear Pequeña U1 , Empalme Alternativo , Precursores del ARN/genética , Sitios de Empalme de ARN , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
12.
Nucleic Acids Res ; 50(11): 6300-6312, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35687109

RESUMEN

Heterogenous nuclear ribonucleoproteins (hnRNPs) are abundant proteins implicated in various steps of RNA processing that assemble on nuclear RNA into larger complexes termed 40S hnRNP particles. Despite their initial discovery 55 years ago, our understanding of these intriguing macromolecular assemblies remains limited. Here, we report the biochemical purification of native 40S hnRNP particles and the determination of their complete protein composition by label-free quantitative mass spectrometry, identifying A-group and C-group hnRNPs as the major protein constituents. Isolated 40S hnRNP particles dissociate upon RNA digestion and can be reconstituted in vitro on defined RNAs in the presence of the individual protein components, demonstrating a scaffolding role for RNA in nucleating particle formation. Finally, we revealed their nanometer scale, condensate-like nature, promoted by intrinsically disordered regions of A-group hnRNPs. Collectively, we identify nuclear 40S hnRNP particles as novel dynamic biomolecular condensates.


Asunto(s)
Condensados Biomoleculares , Ribonucleoproteínas Nucleares Heterogéneas , Núcleo Celular/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , ARN/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101980

RESUMEN

In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.


Asunto(s)
Factores de Empalme de ARN/química , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U2/química , Cristalografía por Rayos X , Humanos , Resonancia Magnética Nuclear Biomolecular , Motivos de Nucleótidos , Factores de Empalme de ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U2/genética
14.
EMBO J ; 41(1): e107640, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34779515

RESUMEN

SRSF1 protein and U1 snRNPs are closely connected splicing factors. They both stimulate exon inclusion, SRSF1 by binding to exonic splicing enhancer sequences (ESEs) and U1 snRNPs by binding to the downstream 5' splice site (SS), and both factors affect 5' SS selection. The binding of U1 snRNPs initiates spliceosome assembly, but SR proteins such as SRSF1 can in some cases substitute for it. The mechanistic basis of this relationship is poorly understood. We show here by single-molecule methods that a single molecule of SRSF1 can be recruited by a U1 snRNP. This reaction is independent of exon sequences and separate from the U1-independent process of binding to an ESE. Structural analysis and cross-linking data show that SRSF1 contacts U1 snRNA stem-loop 3, which is required for splicing. We suggest that the recruitment of SRSF1 to a U1 snRNP at a 5'SS is the basis for exon definition by U1 snRNP and might be one of the principal functions of U1 snRNPs in the core reactions of splicing in mammals.


Asunto(s)
Exones/genética , Conformación de Ácido Nucleico , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Unión Proteica , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo
15.
Nucleic Acids Res ; 49(11): e63, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33677607

RESUMEN

U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon-intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U1/química , Sitios de Unión , Ligandos , Espectroscopía de Resonancia Magnética , Factores de Empalme de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
16.
Nat Commun ; 11(1): 6341, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311468

RESUMEN

Mutations in the RNA-binding protein Fused in Sarcoma (FUS) cause early-onset amyotrophic lateral sclerosis (ALS). However, a detailed understanding of central RNA targets of FUS and their implications for disease remain elusive. Here, we use a unique blend of crosslinking and immunoprecipitation (CLIP) and NMR spectroscopy to identify and characterise physiological and pathological RNA targets of FUS. We find that U1 snRNA is the primary RNA target of FUS via its interaction with stem-loop 3 and provide atomic details of this RNA-mediated mode of interaction with the U1 snRNP. Furthermore, we show that ALS-associated FUS aberrantly contacts U1 snRNA at the Sm site with its zinc finger and traps snRNP biogenesis intermediates in human and murine motor neurons. Altogether, we present molecular insights into a FUS toxic gain-of-function involving direct and aberrant RNA-binding and strengthen the link between two motor neuron diseases, ALS and spinal muscular atrophy (SMA).


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Línea Celular , Predisposición Genética a la Enfermedad/genética , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Neuronas Motoras/metabolismo , Mutación , Dominios y Motivos de Interacción de Proteínas , ARN Nuclear Pequeño/química , Proteína FUS de Unión a ARN/química , Ribonucleoproteína Nuclear Pequeña U1/química
17.
Nat Chem Biol ; 15(12): 1191-1198, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31636429

RESUMEN

Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5' splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5' splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon-intron junction and converts the weak 5' splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5' splice site bulge repair.


Asunto(s)
Empalme del ARN , ARN/química , Conformación Molecular , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química
18.
Nucleic Acids Res ; 47(8): 4181-4197, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30767021

RESUMEN

Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapamycin (mTor), but the mechanism regulating this process remains elusive. Here, we report that SAM68 interacts with U1 small nuclear ribonucleoprotein (U1 snRNP) to promote splicing at the 5' splice site in intron 5 of mTor. We also show that this direct interaction is mediated through U1A, a core-component of U1snRNP. SAM68 was found to bind the RRM1 domain of U1A through its C-terminal tyrosine rich region (YY domain). Deletion of the U1A-SAM68 interaction domain or mutation in SAM68-binding sites in intron 5 of mTor abrogates U1A recruitment and 5' splice site recognition by the U1 snRNP, leading to premature intron 5 termination and polyadenylation. Taken together, our results provide the first mechanistic study by which SAM68 modulates alternative splicing decision, by affecting U1 snRNP recruitment at 5' splice sites.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Precursores del ARN/genética , Empalme del ARN , Proteínas de Unión al ARN/genética , ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Serina-Treonina Quinasas TOR/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Línea Celular , Exones , Fibroblastos/citología , Fibroblastos/metabolismo , Eliminación de Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Intrones , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , ARN/metabolismo , Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
19.
Methods Enzymol ; 614: 393-422, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30611432

RESUMEN

Understanding the RNA binding specificity of protein is of primary interest to decipher their function in the cell. Here, we review the methodology used to solve the structures of protein-RNA complexes using solution-state NMR spectroscopy: from sample preparation to structure calculation procedures. We also describe how molecular dynamics simulations can help providing additional information on the role of key amino acid side chains and of water molecules in protein-RNA recognition.


Asunto(s)
Proteínas CELF/química , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Factores de Empalme de ARN/química , ARN/química , Sitios de Unión , Proteínas CELF/metabolismo , Humanos , Enlace de Hidrógeno , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN/genética , ARN/metabolismo , Factores de Empalme de ARN/metabolismo , Termodinámica
20.
Nucleic Acids Res ; 46(3): 1470-1485, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29244160

RESUMEN

In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.


Asunto(s)
Proteínas Bacterianas/genética , Represión Catabólica , Proteína de Factor 1 del Huésped/genética , Biosíntesis de Proteínas , Pseudomonas aeruginosa/genética , ARN Bacteriano/genética , Proteínas Represoras/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/química , Proteína de Factor 1 del Huésped/metabolismo , Cinética , Modelos Moleculares , Motivos de Nucleótidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Regulón , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...