Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Hear Res ; 337: 25-34, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208792

RESUMEN

Inhibitory glycine receptors containing the α3 subunit (GlyRα3) regulate sensory information processing in the CNS and retina. In previous work, we demonstrated the presence of postsynaptic GlyRα3 immunoreactivity at efferent synapses of the medial and lateral olivocochlear bundle in the organ of Corti; however, the role of these α3-GlyRs in auditory signalling has remained elusive. The present study analyzes distortion-product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs) of knockout mice with a targeted inactivation of the Glra3 gene (Glra3(-/-)) and their wildtype littermates (Glra3(+/+)) before and seven days after acoustic trauma (AT; 4-16 kHz, 120 dB SPL, 1 h). Before AT, DPOAE thresholds were slightly, but significantly lower, and DPOAE amplitudes were slightly larger in Glra3(-/-) as compared to Glra3(+/+) mice. While click- and f-ABR thresholds were similar in both genotypes before AT, threshold-normalized click-ABR wave I amplitudes were smaller in Glra3(-/-) mice as compared to their wildtype littermates. Following AT, both the decrement of ABR wave I amplitudes and the delay of wave I latencies were more pronounced in Glra3(-/-) than Glra3(+/+) mice. Accordingly, correlation between early click-evoked ABR signals (0-2.5 ms from stimulus onset) before and after AT was significantly reduced for Glra3(-/-) as compared to Glra3(+/+) mice. In summary, these results show that loss of α3-GlyRs compromises suprathreshold auditory nerve activity, but not outer hair cell function.


Asunto(s)
Nervio Coclear/fisiopatología , Células Ciliadas Vestibulares/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Emisiones Otoacústicas Espontáneas , Receptores de Glicina/genética , Estimulación Acústica , Animales , Umbral Auditivo/fisiología , Cóclea/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico , Células Ciliadas Auditivas Externas/metabolismo , Audición , Ratones , Ratones Noqueados , Receptores de Glicina/fisiología , Sinapsis/patología
2.
Mol Neurobiol ; 53(8): 5607-27, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26476841

RESUMEN

For all sensory organs, the establishment of spatial and temporal cortical resolution is assumed to be initiated by the first sensory experience and a BDNF-dependent increase in intracortical inhibition. To address the potential of cortical BDNF for sound processing, we used mice with a conditional deletion of BDNF in which Cre expression was under the control of the Pax2 or TrkC promoter. BDNF deletion profiles between these mice differ in the organ of Corti (BDNF (Pax2) -KO) versus the auditory cortex and hippocampus (BDNF (TrkC) -KO). We demonstrate that BDNF (Pax2) -KO but not BDNF (TrkC) -KO mice exhibit reduced sound-evoked suprathreshold ABR waves at the level of the auditory nerve (wave I) and inferior colliculus (IC) (wave IV), indicating that BDNF in lower brain regions but not in the auditory cortex improves sound sensitivity during hearing onset. Extracellular recording of IC neurons of BDNF (Pax2) mutant mice revealed that the reduced sensitivity of auditory fibers in these mice went hand in hand with elevated thresholds, reduced dynamic range, prolonged latency, and increased inhibitory strength in IC neurons. Reduced parvalbumin-positive contacts were found in the ascending auditory circuit, including the auditory cortex and hippocampus of BDNF (Pax2) -KO, but not of BDNF (TrkC) -KO mice. Also, BDNF (Pax2) -WT but not BDNF (Pax2) -KO mice did lose basal inhibitory strength in IC neurons after acoustic trauma. These findings suggest that BDNF in the lower parts of the auditory system drives auditory fidelity along the entire ascending pathway up to the cortex by increasing inhibitory strength in behaviorally relevant frequency regions. Fidelity and inhibitory strength can be lost following auditory nerve injury leading to diminished sensory outcome and increased central noise.


Asunto(s)
Corteza Auditiva/patología , Corteza Auditiva/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ruido , Animales , Corteza Auditiva/metabolismo , Umbral Auditivo , Cóclea/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico , Eliminación de Gen , Audición , Colículos Inferiores/patología , Colículos Inferiores/fisiopatología , Integrasas/metabolismo , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Receptor trkC/metabolismo , Factores de Riesgo
3.
Cell Physiol Biochem ; 35(5): 1905-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25871611

RESUMEN

BACKGROUND: Accumulating evidence suggests that tinnitus may occur despite normal auditory sensitivity, probably linked to partial degeneration of the cochlear nerve and damage of the inner hair cell (IHC) synapse. Damage to the IHC synapses and deafferentation may occur even after moderate noise exposure. For both salicylate- and noise-induced tinnitus, aberrant N-methyl-d-aspartate (NMDA) receptor activation and related auditory nerve excitation have been suggested as origin of cochlear tinnitus. Accordingly, NMDA receptor inhibition has been proposed as a pharmacologic approach for treatment of synaptopathic tinnitus. METHODS: Round-window application of the NMDA receptor antagonist AM-101 (Esketamine hydrochloride gel; Auris Medical AG, Basel, Switzerland) was tested in an animal model of tinnitus induced by acute traumatic noise. The study included the quantification of IHC ribbon synapses as a correlate for deafferentation as well as the measurement of the auditory brainstem response (ABR) to close-threshold sensation level stimuli as an indication of sound-induced auditory nerve activity. RESULTS: We have shown that AM-101 reduced the trauma-induced loss of IHC ribbons and counteracted the decline of ABR wave I amplitude generated in the cochlea/auditory nerve. CONCLUSION: Local round-window application of AM-101 may be a promising therapeutic intervention for the treatment of synaptopathic tinnitus.


Asunto(s)
Cóclea/metabolismo , Ruido , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Anestesia , Animales , Proteínas Reguladoras de la Apoptosis/uso terapéutico , Proteínas Reguladoras de la Apoptosis/toxicidad , Umbral Auditivo/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Cóclea/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Acúfeno/tratamiento farmacológico , Acúfeno/etiología
4.
Nat Commun ; 5: 5331, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25354791

RESUMEN

The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ganglios Espinales/metabolismo , Neuralgia/etiología , Nociceptores/metabolismo , Terminales Presinápticos/metabolismo , Receptores de GABA-A/metabolismo , Animales , Masculino , Ratones , Ratones Noqueados , Nocicepción
5.
Front Mol Neurosci ; 6: 20, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950737

RESUMEN

Voltage-gated L-type Ca(2+) channels (L-VGCCs) like CaV1.2 are assumed to play a crucial role for controlling release of trophic peptides including brain-derived neurotrophic factor (BDNF). In the inner ear of the adult mouse, besides the well-described L-VGCC CaV1.3, CaV1.2 is also expressed. Due to lethality of constitutive CaV1.2 knock-out mice, the function of this ion channel as well as its putative relationship to BDNF in the auditory system is entirely elusive. We recently described that BDNF plays a differential role for inner hair cell (IHC) vesicles release in normal and traumatized condition. To elucidate a presumptive role of CaV1.2 during this process, two tissue-specific conditional mouse lines were generated. To distinguish the impact of CaV1.2 on the cochlea from that on feedback loops from higher auditory centers CaV1.2 was deleted, in one mouse line, under the Pax2 promoter (CaV1.2(Pax2)) leading to a deletion in the spiral ganglion neurons, dorsal cochlear nucleus, and inferior colliculus. In the second mouse line, the Egr2 promoter was used for deleting CaV1.2 (CaV1.2(Egr2)) in auditory brainstem nuclei. In both mouse lines, normal hearing threshold and equal number of IHC release sites were observed. We found a slight reduction of auditory brainstem response wave I amplitudes in the CaV1.2(Pax2) mice, but not in the CaV1.2(Egr2) mice. After noise exposure, CaV1.2(Pax2) mice had less-pronounced hearing loss that correlated with maintenance of ribbons in IHCs and less reduced activity in auditory nerve fibers, as well as in higher brain centers at supra-threshold sound stimulation. As reduced cochlear BDNF mRNA levels were found in CaV1.2(Pax2) mice, we suggest that a CaV1.2-dependent step may participate in triggering part of the beneficial and deteriorating effects of cochlear BDNF in intact systems and during noise exposure through a pathway that is independent of CaV1.2 function in efferent circuits.

6.
J Neurosci ; 33(22): 9508-19, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23719817

RESUMEN

The encoding of auditory information with indefatigable precision requires efficient resupply of vesicles at inner hair cell (IHC) ribbon synapses. Otoferlin, a transmembrane protein responsible for deafness in DFNB9 families, has been postulated to act as a calcium sensor for exocytosis as well as to be involved in rapid vesicle replenishment of IHCs. However, the molecular basis of vesicle recycling in IHCs is largely unknown. In the present study, we used high-resolution liquid chromatography coupled with mass spectrometry to copurify otoferlin interaction partners in the mammalian cochlea. We identified multiple subunits of the adaptor protein complex AP-2 (CLAP), an essential component of clathrin-mediated endocytosis, as binding partners of otoferlin in rats and mice. The interaction between otoferlin and AP-2 was confirmed by coimmunoprecipitation. We also found that AP-2 interacts with myosin VI, another otoferlin binding partner important for clathrin-mediated endocytosis (CME). The expression of AP-2 in IHCs was verified by reverse transcription PCR. Confocal microscopy experiments revealed that the expression of AP-2 and its colocalization with otoferlin is confined to mature IHCs. When CME was inhibited by blocking dynamin action, real-time changes in membrane capacitance showed impaired synaptic vesicle replenishment in mature but not immature IHCs. We suggest that an otoferlin-AP-2 interaction drives Ca(2+)- and stimulus-dependent compensating CME in mature IHCs.


Asunto(s)
Clatrina/fisiología , Cóclea/fisiología , Endocitosis/fisiología , Células Ciliadas Auditivas Internas/fisiología , Proteínas de la Membrana/fisiología , Complejo 2 de Proteína Adaptadora/fisiología , Animales , Membrana Celular/fisiología , Cóclea/citología , Fenómenos Electrofisiológicos , Inmunohistoquímica , Inmunoprecipitación , Espectrometría de Masas , Ratones , Microscopía Confocal , Cadenas Pesadas de Miosina/fisiología , Unión Proteica , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Sinapsis/fisiología
7.
Pharmacol Rep ; 63(4): 1056-60, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22001994

RESUMEN

The modulation of expression of the dopamine transporter by dopaminergic drugs was investigated by flow cytometry in peripheral blood lymphocytes from patients suffering Parkinson's disease. An 8-week in vivo exposure to pramipexole (0.7 mg free base, 3 times a day) or ropinirole (12 mg, once daily), but not levodopa/carbidopa (100/25 mg, 3 times a day), significantly reduced the mean fluorescence intensity of the dopamine transporter in peripheral blood lymphocytes. These results demonstrate that levodopa differs from dopamine agonists in its regulation of dopamine transporter expression in peripheral blood lymphocytes.


Asunto(s)
Antiparkinsonianos/farmacología , Agonistas de Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Anciano , Benzotiazoles/farmacología , Carbidopa/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Combinación de Medicamentos , Femenino , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Indoles/farmacología , Levodopa/farmacología , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Masculino , Persona de Mediana Edad , Pramipexol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA