Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Intervalo de año de publicación
1.
Sci Total Environ ; 692: 1165-1174, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31539948

RESUMEN

The management system of soils and nitrogen application can cause impacts on the N2O emissions produced by the agricultural sector. In the establishment of practices of greenhouse gas mitigation for this sector, the objective of this study was to evaluate the effect of soil tillage, with and without N fertilization, on N2O emissions from Oxisols under rainfed maize in the Brazilian Cerrado region. The managements were of monoculture maize under conventional tillage (CT) and no-tillage (NT), with (1) and without (0) application of N fertilizer (0 and 257 kg N ha-1). From November 2014 to October 2015, gas emissions were measured. The soil and climate variables were measured and related to the N2O fluxes. In the N-fertilized treatments, N2O fluxes were higher (P < 0.01), ranging from -21 µg m-2 h-1 to 548 µg m-2 h-1 N2O under conventional tillage and from -21 µg m-2 h-1 to 380 µg m-2 h-1 N2O under no-tillage, compared with -6 to 93 µg m-2 h-1 N2O from systems without N application. There was a combined effect of mineral N and water-filled pore space for most N2O fluxes. The emission factors of N2O during maize cultivation were lower than the standard factor (1%) established by the International Panel of Climate Change. During the plant crop cycle, 30% less N2O was emitted from the N-fertilized no-tillage than from the conventional tillage. For the total cumulative N2O (crop cycle + fallow), the N2O emissions from NT1 and CT1 were not different, but 10× higher than those from the respective crops without N fertilization. To the emissions per unit of grain yield, CT1 and NT1 emitted 769 and 391 mg N2O kg-1 grain produced, respectively, and NT1 was most efficient in fertilizer-into-product conversion. Under maize cultivation, the soil acted as N2O source, regardless of the management.


Asunto(s)
Agricultura/métodos , Contaminación del Aire/prevención & control , Fertilizantes , Gases de Efecto Invernadero/análisis , Dióxido de Nitrógeno/análisis , Zea mays/crecimiento & desarrollo , Contaminación del Aire/estadística & datos numéricos , Brasil , Suelo
2.
Rev. bras. entomol ; 60(1): 82-93, Jan.-Mar. 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-775195

RESUMEN

ABSTRACT The cultivation of genetically modified crops in Brazil has led to the need to assess the impacts of this technology on non-target species. Under field conditions, the potential effect on insect biodiversity was evaluated by comparing a homogeneous corn field with conventional and transgenic maize, expressing different Bt proteins in seven counties of Minas Gerais, Brazil. The richness pattern of non-target insect species, secondary pests and natural enemies were observed. The results do not support the hypothesis that Bt protein affects insect biodiversity. The richness and diversity data of insects studied were dependent on the location and other factors, such as the use of insecticides, which may be a major factor where they are used.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...