Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Acta Biomater ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362453

RESUMEN

The organization of myofibers and extra cellular matrix within the myocardium plays a significant role in defining cardiac function. When pathological events occur, such as myocardial infarction (MI), this organization can become disrupted, leading to degraded pumping performance. The current study proposes a multiscale finite element (FE) framework to determine realistic fiber distributions in the left ventricle (LV). This is achieved by implementing a stress-based fiber reorientation law, which seeks to align the fibers with local traction vectors, such that contractile force and load bearing capabilities are maximized. By utilizing the total stress (passive and active), both myofibers and collagen fibers are reoriented. Simulations are conducted to predict the baseline fiber configuration in a normal LV as well as the adverse fiber reorientation that occurs due to different size MIs. The baseline model successfully captures the transmural variation of helical fiber angles within the LV wall, as well as the transverse fiber angle variation from base to apex. In the models of MI, the patterns of fiber reorientation in the infarct, border zone, and remote regions closely align with previous experimental findings, with a significant increase in fibers oriented in a left-handed helical configuration and increased dispersion in the infarct region. Furthermore, the severity of fiber reorientation and impairment of pumping performance both showed a correlation with the size of the infarct. The proposed multiscale modeling framework allows for the effective prediction of adverse remodeling and offers the potential for assessing the effectiveness of therapeutic interventions in the future. STATEMENT OF SIGNIFICANCE: The organization of muscle and collagen fibers within the heart plays a significant role in defining cardiac function. This organization can become disrupted after a heart attack, leading to degraded pumping performance. In the current study, we implemented a stress-based fiber reorientation law into a computer model of the heart, which seeks to realign the fibers such that contractile force and load bearing capabilities are maximized. The primary goal was to evaluate the effects of different sized heart attacks. We observed substantial fiber remodeling in the heart, which matched experimental observations. The proposed computational framework allows for the effective prediction of adverse remodeling and offers the potential for assessing the effectiveness of therapeutic interventions in the future.

2.
Am J Physiol Heart Circ Physiol ; 327(3): H715-H721, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39092999

RESUMEN

GelBox is open-source software that was developed with the goal of enhancing rigor, reproducibility, and transparency when analyzing gels and immunoblots. It combines image adjustments (cropping, rotation, brightness, and contrast), background correction, and band-fitting in a single application. Users can also associate each lane in an image with metadata (for example, sample type). GelBox data files integrate the raw data, supplied metadata, image adjustments, and band-level analyses in a single file to improve traceability. GelBox has a user-friendly interface and was developed using MATLAB. The software, installation instructions, and tutorials, are available at https://campbell-muscle-lab.github.io/GelBox/.NEW & NOTEWORTHY GelBox is open-source software that was developed to enhance rigor, reproducibility, and transparency when analyzing gels and immunoblots. It combines image adjustments (cropping, rotation, brightness, and contrast), background correction, and band-fitting in a single application. Users can also associate each lane in an image with metadata (for example, sample type).


Asunto(s)
Programas Informáticos , Reproducibilidad de los Resultados , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Animales
3.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-39005332

RESUMEN

Pulmonary hypertension (PH) results in RV hypertrophy, fibrosis and dysfunction resulting in RV failure which is associated with impaired RV metabolism and mitochondrial respiration. Mitochondrial supercomplexes (mSC) are assemblies of multiple electron transport chain (ETC) complexes that consist of physically associated complex I, III and IV that may enhance respiration and lower ROS generation. The goal of this study was to determine if mSCs are reduced in RV dysfunction associated with PH. We induced PH in Sprague-Dawley rats by Sugen/Hypoxia (3 weeks) followed by normoxia (4 weeks). Control and PH rats were subjected to echocardiography, blue and clear native-PAGE to assess mSC abundance and activity, and cardiomyocyte isolation to assess mitochondrial reactive oxygen species (ROS). mSC formation was also assessed in explanted human hearts with and without RV dysfunction. RV activity of CI and CIV and abundance of CI, CIII and CIV in mitochondrial mSCs was severely reduced in PH rats compared to control. There were no differences in total CI or CIV activity or abundance in smaller ETC assemblies. There were no changes in both RV and LV of expression of representative ETC complex subunits. PAT, TAPSE and RV Wall thickness significantly correlated with CIV and CI activity in mSC, but not total CI and CIV activity in the RV. Consistent with reduced mSC activity, isolated PH RV myocytes had increased mitochondrial ROS generation compared to control. Reduced mSC activity was also demonstrated in explanted human RV tissue from patients undergoing cardiac transplant with RV dysfunction. The right atrial pressure/pulmonary capillary wedge pressure ratio (RAP/PCWP, an indicator of RV dysfunction) negatively correlated with RV mSC activity level. In conclusion, reduced assembly and activity of mitochondrial mSC is correlated with RV dysfunction in PH rats and humans with RV dysfunction.

4.
Sci Transl Med ; 16(758): eadg3894, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083588

RESUMEN

Patients receiving mechanical ventilation in the intensive care unit (ICU) frequently develop contractile weakness of the diaphragm. Consequently, they may experience difficulty weaning from mechanical ventilation, which increases mortality and poses a high economic burden. Because of a lack of knowledge regarding the molecular changes in the diaphragm, no treatment is currently available to improve diaphragm contractility. We compared diaphragm biopsies from ventilated ICU patients (N = 54) to those of non-ICU patients undergoing thoracic surgery (N = 27). By integrating data from myofiber force measurements, x-ray diffraction experiments, and biochemical assays with clinical data, we found that in myofibers isolated from the diaphragm of ventilated ICU patients, myosin is trapped in an energy-sparing, super-relaxed state, which impairs the binding of myosin to actin during diaphragm contraction. Studies on quadriceps biopsies of ICU patients and on the diaphragm of previously healthy mechanically ventilated rats suggested that the super-relaxed myosins are specific to the diaphragm and not a result of critical illness. Exposing slow- and fast-twitch myofibers isolated from the diaphragm biopsies to small-molecule compounds activating troponin restored contractile force in vitro. These findings support the continued development of drugs that target sarcomere proteins to increase the calcium sensitivity of myofibers for the treatment of ICU-acquired diaphragm weakness.


Asunto(s)
Diafragma , Contracción Muscular , Miosinas , Respiración Artificial , Músculos Respiratorios , Humanos , Animales , Miosinas/metabolismo , Diafragma/metabolismo , Diafragma/fisiopatología , Músculos Respiratorios/metabolismo , Ratas , Masculino , Unidades de Cuidados Intensivos , Persona de Mediana Edad , Femenino , Anciano , Hibernación/fisiología , Actinas/metabolismo
5.
Nat Commun ; 15(1): 5111, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877002

RESUMEN

Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) is a determinant of cardiac myofilament function. Although cMyBP-C phosphorylation by various protein kinases has been extensively studied, the influence of protein phosphatases on cMyBP-C's multiple phosphorylation sites has remained largely obscure. Here we provide a detailed biochemical characterization of cMyBP-C dephosphorylation by protein phosphatases 1 and 2 A (PP1 and PP2A), and develop an integrated kinetic model for cMyBP-C phosphorylation using data for both PP1, PP2A and various protein kinases known to phosphorylate cMyBP-C. We find strong site-specificity and a hierarchical mechanism for both phosphatases, proceeding in the opposite direction of sequential phosphorylation by potein kinase A. The model is consistent with published data from human patients and predicts complex non-linear cMyBP-C phosphorylation patterns that are validated experimentally. Our results suggest non-redundant roles for PP1 and PP2A under both physiological and heart failure conditions, and emphasize the importance of phosphatases for cMyBP-C regulation.


Asunto(s)
Proteínas Portadoras , Miocardio , Proteína Fosfatasa 1 , Proteína Fosfatasa 2 , Fosforilación , Humanos , Proteína Fosfatasa 1/metabolismo , Proteínas Portadoras/metabolismo , Animales , Proteína Fosfatasa 2/metabolismo , Miocardio/metabolismo , Proteínas Quinasas/metabolismo , Cinética
6.
Biophys J ; 123(18): 2996-3009, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38807364

RESUMEN

The length-dependent activation (LDA) of maximum force and calcium sensitivity are established features of cardiac muscle contraction but the dominant underlying mechanisms remain to be fully clarified. Alongside the well-documented regulation of contraction via the thin filaments, experiments have identified an additional force-dependent thick-filament activation, whereby myosin heads parked in a so-called off state become available to generate force. This process produces a feedback effect that may potentially drive LDA. Using biomechanical modeling of a human left-ventricular myocyte, this study investigates the extent to which the off-state dynamics could, by itself, plausibly account for LDA, depending on the specific mathematical formulation of the feedback. We hypothesized four different models of the off-state regulatory feedback based on (A) total force, (B) active force, (C) sarcomere strain, and (D) passive force. We tested if these models could reproduce the isometric steady-state and dynamic LDA features predicted by an earlier published model of a human left-ventricle myocyte featuring purely phenomenological length dependences. The results suggest that only total-force feedback (A) is capable of reproducing the expected behaviors, but that passive tension could provide a length-dependent signal on which to initiate the feedback. Furthermore, by attributing LDA to off-state dynamics, our proposed model also qualitatively reproduces experimentally observed effects of the off-state-stabilizing drug mavacamten. Taken together, these results support off-state dynamics as a plausible primary mechanism underlying LDA.


Asunto(s)
Sarcómeros , Humanos , Fenómenos Biomecánicos , Sarcómeros/metabolismo , Sarcómeros/fisiología , Contracción Miocárdica/fisiología , Modelos Cardiovasculares , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Ventrículos Cardíacos/citología
7.
Ann Biomed Eng ; 52(8): 2024-2038, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38564074

RESUMEN

Multiscale models of the cardiovascular system are emerging as effective tools for investigating the mechanisms that drive ventricular growth and remodeling. These models can predict how molecular-level mechanisms impact organ-level structure and function and could provide new insights that help improve patient care. MyoFE is a multiscale computer framework that bridges molecular and organ-level mechanisms in a finite element model of the left ventricle that is coupled with the systemic circulation. In this study, we extend MyoFE to include a growth algorithm, based on volumetric growth theory, to simulate concentric growth (wall thickening/thinning) and eccentric growth (chamber dilation/constriction) in response to valvular diseases. Specifically in our model, concentric growth is controlled by time-averaged total stress along the fiber direction over a cardiac cycle while eccentric growth responds to time-averaged intracellular myofiber passive stress over a cardiac cycle. The new framework correctly predicted different forms of growth in response to two types of valvular diseases, namely aortic stenosis and mitral regurgitation. Furthermore, the model predicted that LV size and function are nearly restored (reversal of growth) when the disease-mimicking perturbation was removed in the simulations for each valvular disorder. In conclusion, the simulations suggest that time-averaged total stress along the fiber direction and time-averaged intracellular myofiber passive stress can be used to drive concentric and eccentric growth in simulations of valve disease.


Asunto(s)
Análisis de Elementos Finitos , Ventrículos Cardíacos , Modelos Cardiovasculares , Humanos , Ventrículos Cardíacos/fisiopatología , Simulación por Computador , Estenosis de la Válvula Aórtica/fisiopatología , Enfermedades de las Válvulas Cardíacas/fisiopatología , Insuficiencia de la Válvula Mitral/fisiopatología
8.
bioRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496514

RESUMEN

GelBox is open-source software that was developed with the goal of enhancing rigor, reproducibility, and transparency when analyzing gels and immunoblots. It combines image adjustments (cropping, rotation, brightness, and contrast), background correction, and band-fitting in a single application. Users can also associate each lane in an image with metadata (for example, sample type). GelBox data files integrate the raw data, supplied metadata, image adjustments, and band-level analyses in a single file to improve traceability. GelBox has a user-friendly interface and was developed using MATLAB. The software, installation instructions, and tutorials, are available at https://campbell-muscle-lab.github.io/GelBox/.

9.
Biophys J ; 123(5): 525-526, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38297835
10.
bioRxiv ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38370737

RESUMEN

Protein S (PS), the critical plasma cofactor for the anticoagulants tissue factor (TF) pathway inhibitor (TFPI) and activated protein C (APC), circulates in two functionally distinct pools: free (anticoagulant) or bound to complement component 4b-binding protein (C4BP) (anti-inflammatory). Acquired free PS deficiency is detected in several viral infections, but its cause is unclear. Here, we identified a shear-dependent interaction between PS and von Willebrand Factor (VWF) by mass spectrometry. Consistently, plasma PS and VWF comigrated in both native and agarose gel electrophoresis. The PS/VWF interaction was blocked by TFPI but not APC, suggesting an interaction with the C-terminal sex hormone binding globulin (SHBG) region of PS. Microfluidic systems, mimicking arterial laminar flow or disrupted turbulent flow, demonstrated that PS stably binds VWF as VWF unfolds under turbulent flow. PS/VWF complexes also localized to platelet thrombi under laminar arterial flow. In thrombin generation-based assays, shearing plasma decreased PS activity, an effect not seen in the absence of VWF. Finally, free PS deficiency in COVID-19 patients, measured using an antibody that binds near the C4BP binding site in SHBG, correlated with changes in VWF, but not C4BP, and with thrombin generation. Our data suggest that PS binds to a shear-exposed site on VWF, thus sequestering free PS and decreasing its anticoagulant activity, which would account for the increased thrombin generation potential. As many viral infections present with free PS deficiency, elevated circulating VWF, and increased vascular shear, we propose that the PS/VWF interaction reported here is a likely contributor to virus-associated thrombotic risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...