Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; : e17449, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967124

RESUMEN

A refugial population of the endangered delta smelt (Hypomesus transpacificus) has been maintained at the Fish Conservation and Culture Laboratory (FCCL) at UC Davis since 2008. Despite intense genetic management, fitness differences between wild and cultured fish have been observed at the FCCL. To investigate the molecular underpinnings of hatchery domestication, we used whole-genome bisulfite sequencing to quantify epigenetic differences between wild and hatchery-origin delta smelt. Differentially methylated regions (DMRs) were identified from 104 individuals by comparing the methylation patterns in different generations of hatchery fish (G1, G2, G3) with their wild parents (G0). We discovered a total of 132 significant DMRs (p < .05) between G0 and G1, 132 significant DMRs between G0 and G2, and 201 significant DMRs between G0 and G3. Our results demonstrate substantial differences in methylation patterns emerged between the wild and hatchery-reared fish in the early generations in the hatchery, with a higher proportion of hypermethylated DMRs in hatchery-reared fish. The rearing environment was found to be a stronger predictor of individual clustering based on methylation patterns than family, sex or generation. Our study indicates a reinforcement of the epigenetic status with successive generations in the hatchery environment, as evidenced by an increase in methylation in hypermethylated DMRs and a decrease in methylation in hypomethylated DMRs over time. Lastly, our results demonstrated heterogeneity in inherited methylation pattern in families across generations. These insights highlight the long-term consequences of hatchery practices on the epigenetic landscape, potentially impacting wild fish populations.

2.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38885060

RESUMEN

Multiple studies in a range of taxa have found links between structural variants and the development of ecologically important traits. Such variants are becoming easier to find due, in large part, to the increase in the amount of genome-wide sequence data in nonmodel organisms. The salmonids (salmon, trout, and charr) are a taxonomic group with abundant genome-wide datasets due to their importance in aquaculture, fisheries, and variation in multiple ecologically important life-history traits. Previous research on rainbow trout (Oncorhynchus mykiss) has documented a large pericentric (∼55 Mb) chromosomal inversion (CI) on chromosome 5 (Omy05) and a second smaller (∼14 Mb) chromosome inversion on Omy20. While the Omy05 inversion appears to be associated with multiple adaptive traits, the inversion on Omy20 has received far less attention. In this study, we re-analyze RAD-seq and amplicon data from several populations of rainbow trout (O. mykiss) to better document the structure and geographic distribution of variation in the Omy20 CI. Moreover, we utilize phylogenomic techniques to characterize both the age- and the protein-coding gene content of the Omy20 CI. We find that the age of the Omy20 inversion dates to the early stages of O. mykiss speciation and predates the Omy05 inversion by ∼450,000 years. The 2 CIs differ further in terms of the frequency of the homokaryotypes. While both forms of the Omy05 CI are found across the eastern Pacific, the ancestral version of the Omy20 CI is restricted to the southern portion of the species range in California. Furthermore, the Omy20 inverted haplotype is comparable in genetic diversity to the ancestral form, whereas derived CIs typically show substantially reduced genetic diversity. These data contribute to our understanding of the age and distribution of a large CI in rainbow trout and provide a framework for researchers looking to document CIs in other nonmodel species.


Asunto(s)
Inversión Cromosómica , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/genética , Genética de Población , Genoma , Filogenia , Variación Genética
3.
G3 (Bethesda) ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934850

RESUMEN

Advances in genome sequencing and assembly techniques have increased the documentation of structural variants in wild organisms. Of these variants, chromosomal inversions are especially prominent due to their large size and active recombination suppression between alternative homokaryotypes. This suppression enables the two forms of the inversion to be maintained and allows preservation of locally adapted alleles. The Barramundi Perch (Lates calcarifer) is a widespread species complex with three main genetic lineages located in the biogeographic regions of Australia and New Guinea (AUS+NG), Southeast Asia (SEA), and the Indian Subcontinent (IND). Barramundi Perch are typically considered to be a protandrous sequential hermaphrodite species that exhibits catadromy. Freshwater occupancy and intraspecific variation in life history (e.g., partially migratory populations) exist and provide opportunities for strongly divergent selection associated with, for example, salinity tolerance, swimming ability, and marine dispersal. Herein, we utilize genomic data generated from all three genetic lineages to identify and describe three polymorphic candidate chromosomal inversions. These candidate chromosomal inversions appear to be fixed for ancestral variants in the IND lineage, fixed for inverted versions in the AUS+NG lineage, and exhibit variation in all three inversions in the SEA lineage. Barramundi Perch have a diverse portfolio of life history options that includes migratory strategy as well as sexual system (i.e., hermaphroditism and gonochorism). We propose that the some of the life history variability observed in Barramundi Perch may be linked to inversions and, in so doing, we present genetic data that might be useful in enhancing aquaculture production and population management.

4.
Genome Biol ; 25(1): 120, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741126

RESUMEN

BACKGROUND: Genomic regions that remain poorly understood, often referred to as the dark genome, contain a variety of functionally relevant and biologically informative features. These include endogenous viral elements (EVEs)-virus-derived sequences that can dramatically impact host biology and serve as a virus fossil record. In this study, we introduce a database-integrated genome screening (DIGS) approach to investigate the dark genome in silico, focusing on EVEs found within vertebrate genomes. RESULTS: Using DIGS on 874 vertebrate genomes, we uncover approximately 1.1 million EVE sequences, with over 99% originating from endogenous retroviruses or transposable elements that contain EVE DNA. We show that the remaining 6038 sequences represent over a thousand distinct horizontal gene transfer events across 10 virus families, including some that have not previously been reported as EVEs. We explore the genomic and phylogenetic characteristics of non-retroviral EVEs and determine their rates of acquisition during vertebrate evolution. Our study uncovers novel virus diversity, broadens knowledge of virus distribution among vertebrate hosts, and provides new insights into the ecology and evolution of vertebrate viruses. CONCLUSIONS: We comprehensively catalog and analyze EVEs within 874 vertebrate genomes, shedding light on the distribution, diversity, and long-term evolution of viruses and reveal their extensive impact on vertebrate genome evolution. Our results demonstrate the power of linking a relational database management system to a similarity search-based screening pipeline for in silico exploration of the dark genome.


Asunto(s)
Fósiles , Genoma , Filogenia , Vertebrados , Animales , Vertebrados/genética , Vertebrados/virología , Evolución Molecular , Humanos , Transferencia de Gen Horizontal , Virus/genética , Genómica/métodos , Retrovirus Endógenos/genética , Elementos Transponibles de ADN
5.
iScience ; 27(2): 108904, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38533454

RESUMEN

Environmental DNA holds significant promise as a non-invasive tool for tracking terrestrial biodiversity. However, in non-homogenous terrestrial environments, the continual exploration of new substrates is crucial. Here we test the hypothesis that spider webs can act as passive biofilters, capturing eDNA from vertebrates present in the local environment. Using a metabarcoding approach, we detected vertebrate eDNA from all analyzed spider webs (N = 49). Spider webs obtained from an Australian woodland locality yielded vertebrate eDNA from 32 different species, including native mammals and birds. In contrast, webs from Perth Zoo, less than 50 km away, yielded eDNA from 61 different vertebrates and produced a highly distinct species composition, largely reflecting exotic species hosted in the zoo. We show that higher animal biomass and proximity to animal enclosures increased eDNA detection probability in the zoo. Our results indicate a tremendous potential for using spider webs as a cost-effective means to monitor terrestrial vertebrates.

6.
CRISPR J ; 7(1): 12-28, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353617

RESUMEN

Disease resistance genes in livestock provide health benefits to animals and opportunities for farmers to meet the growing demand for affordable, high-quality protein. Previously, researchers used gene editing to modify the porcine CD163 gene and demonstrated resistance to a harmful virus that causes porcine reproductive and respiratory syndrome (PRRS). To maximize potential benefits, this disease resistance trait needs to be present in commercially relevant breeding populations for multiplication and distribution of pigs. Toward this goal, a first-of-its-kind, scaled gene editing program was established to introduce a single modified CD163 allele into four genetically diverse, elite porcine lines. This effort produced healthy pigs that resisted PRRS virus infection as determined by macrophage and animal challenges. This founder population will be used for additional disease and trait testing, multiplication, and commercial distribution upon regulatory approval. Applying CRISPR-Cas to eliminate a viral disease represents a major step toward improving animal health.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Síndrome Respiratorio y de la Reproducción Porcina/genética , Sistemas CRISPR-Cas/genética , Resistencia a la Enfermedad/genética , Edición Génica , Ganado
7.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273563

RESUMEN

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Asunto(s)
Ecosistema , Agua Subterránea , Biodiversidad , Agua Dulce , Contaminación Ambiental
8.
Evol Appl ; 16(6): 1119-1134, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37360023

RESUMEN

Invasive species are a major threat to global biodiversity, yet also represent large-scale unplanned ecological and evolutionary experiments to address fundamental questions in nature. Here we analyzed both native and invasive populations of predatory northern pike (Esox lucius) to characterize landscape genetic variation, determine the most likely origins of introduced populations, and investigate a presumably postglacial population from Southeast Alaska of unclear provenance. Using a set of 4329 SNPs from 351 individual Alaskan northern pike representing the most widespread geographic sampling to date, our results confirm low levels of genetic diversity in native populations (average 𝝅 of 3.18 × 10-4) and even less in invasive populations (average 𝝅 of 2.68 × 10-4) consistent with bottleneck effects. Our analyses indicate that invasive northern pike likely came from multiple introductions from different native Alaskan populations and subsequently dispersed from original introduction sites. At the broadest scale, invasive populations appear to have been founded from two distinct regions of Alaska, indicative of two independent introduction events. Genetic admixture resulting from introductions from multiple source populations may have mitigated the negative effects associated with genetic bottlenecks in this species with naturally low levels of genetic diversity. Genomic signatures strongly suggest an excess of rare, population-specific alleles, pointing to a small number of founding individuals in both native and introduced populations consistent with a species' life history of limited dispersal and gene flow. Lastly, the results strongly suggest that a small isolated population of pike, located in Southeast Alaska, is native in origin rather than stemming from a contemporary introduction event. Although theory predicts that lack of genetic variation may limit colonization success of novel environments, we detected no evidence that a lack of standing variation limited the success of this genetically depauperate apex predator.

9.
Zootaxa ; 5254(1): 1-29, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-37044738

RESUMEN

Rainbow Trout, Oncorhynchus mykiss, exhibit high levels of phenotypic diversity leading to the recognition of numerous subspecies. A major distinction among Rainbow Trout subspecies exists between Coastal Rainbow Trout (O. m. irideus), which occurs west of the Cascade and Sierra Nevada mountain ranges, and interior Redband Trout (O. mykiss sspp.), largely distributed to the east. Interior Redband Trout are composed of three primary lineages and can share various outward, anatomical or physiological characteristics that are often symplesiomorphies or examples of convergence. We examine high-throughput DNA sequence data from Sacramento Redband Trout O. m. stonei from the Upper Pit and Upper McCloud Rivers along with representatives of Rainbow Trout and Golden Trout lineages to clarify the composition and relationships of the Sacramento Redband Trout. We find O. m. stonei to be polyphyletic, divided between populations in the Pit River and the Upper McCloud River. Redband Trout obtained from the Pit River are most-closely related to Great Basin Redband Trout O. m. newberrii and to fish of the Warner Lakes Basin and Surprise Valley within the O. m. newberrii lineage. The type specimen of O. m. stonei, collected from the Lower McCloud River, is phenotypically similar to Great Basin Redband Trout. We find as well that the isolated populations of trout in the Upper McCloud River Basin represent a lineage of Rainbow Trout now restricted to that region, are monophyletic and are not most closely related to the interior Redband Trout lineages of O. m. newberrii or O. m. gairdnerii. Furthermore, they are not represented by the type specimens of O. m. stonei or O. m. shasta. Consequently, we formally describe the McCloud River Redband Trout O. mykiss calisulat, new subspecies.


Asunto(s)
Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/genética , Ríos , ADN , Análisis de Secuencia de ADN
10.
Sci Total Environ ; 873: 162322, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801404

RESUMEN

Environmental DNA (eDNA) is the fastest growing biomonitoring tool fuelled by two key features: time efficiency and sensitivity. Technological advancements allow rapid biodiversity detection at both species and community levels with increasing accuracy. Concurrently, there has been a global demand to standardise eDNA methods, but this is only possible with an in-depth overview of the technological advancements and a discussion of the pros and cons of available methods. We therefore conducted a systematic literature review of 407 peer-reviewed papers on aquatic eDNA published between 2012 and 2021. We observed a gradual increase in the annual number of publications from four (2012) to 28 (2018), followed by a rapid growth to 124 publications in 2021. This was mirrored by a tremendous diversification of methods in all aspects of the eDNA workflow. For example, in 2012 only freezing was applied to preserve filter samples, whereas we recorded 12 different preservation methods in the 2021 literature. Despite an ongoing standardisation debate in the eDNA community, the field is seemingly moving fast in the opposite direction and we discuss the reasons and implications. Moreover, by compiling the largest PCR-primer database to date, we provide information on 522 and 141 published species-specific and metabarcoding primers targeting a wide range of aquatic organisms. This works as a user-friendly 'distillation' of primer information that was hitherto scattered across hundreds of papers, but the list also reflects which taxa are commonly studied with eDNA technology in aquatic environments such as fish and amphibians, and reveals that groups such as corals, plankton and algae are under-studied. Efforts to improve sampling and extraction methods, primer specificity and reference databases are crucial to capture these ecologically important taxa in future eDNA biomonitoring surveys. In a rapidly diversifying field, this review synthetises aquatic eDNA procedures and can guide eDNA users towards best practice.


Asunto(s)
ADN Ambiental , Animales , Monitoreo Biológico , Código de Barras del ADN Taxonómico , Monitoreo del Ambiente/métodos , Biodiversidad , Peces
11.
Mol Ecol Resour ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847138

RESUMEN

Accurate taxonomic identification is foundational for effective species monitoring and management. When visual identifications are infeasible or inaccurate, genetic approaches provide a reliable alternative. However, these approaches are sometimes less viable (e.g., need for near real-time results, remote locations, funding concerns, molecular inexperience). In these situations, CRISPR-based genetic tools can fill an unoccupied niche between real-time, inexpensive, but error-prone visual identification and more expensive or time-consuming, but accurate genetic identification for taxonomic units that are difficult or impossible to visually identify. Herein, we use genomic data to develop CRISPR-based SHERLOCK assays capable of rapidly (<1 h), accurately (94%-98% concordance between phenotypic and genotypic assignments), and sensitively (detects 1-10 DNA copies/reaction) distinguishing ESA-listed Chinook salmon runs (winter- and spring-run) from each other and from unlisted runs (fall- and late fall-run) in California's Central Valley. The assays can be field deployable with minimally invasive mucus swabbing negating the need for DNA extraction (decreasing costs and labour), minimal and inexpensive equipment needs, and minimal training to conduct following assay development. This study provides a powerful genetic approach for a species of conservation concern that benefits from near real-time management decision-making but also serves as a precedent for transforming how conservation scientists and managers view genetic identification going forward. Once developed, CRISPR-based tools can provide accurate, sensitive, and rapid results, potentially without the prohibitive need for expensive specialty equipment or extensive molecular training. Further adoption of this technology will have widespread value for the monitoring and protection of our natural resources.

12.
PLoS Biol ; 20(11): e3001867, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36445931

RESUMEN

Parvoviruses (family Parvoviridae) are small DNA viruses that cause numerous diseases of medical, veterinary, and agricultural significance and have important applications in gene and anticancer therapy. DNA sequences derived from ancient parvoviruses are common in animal genomes and analysis of these endogenous parvoviral elements (EPVs) has demonstrated that the family, which includes twelve vertebrate-specific genera, arose in the distant evolutionary past. So far, however, such "paleovirological" analysis has only provided glimpses into the biology of ancient parvoviruses and their long-term evolutionary interactions with hosts. Here, we comprehensively map EPV diversity in 752 published vertebrate genomes, revealing defining aspects of ecology and evolution within individual parvovirus genera. We identify 364 distinct EPV sequences and show these represent approximately 200 unique germline incorporation events, involving at least five distinct parvovirus genera, which took place at points throughout the Cenozoic Era. We use the spatiotemporal and host range calibrations provided by these sequences to infer defining aspects of long-term evolution within individual parvovirus genera, including mammalian vicariance for genus Protoparvovirus, and interclass transmission for genus Dependoparvovirus. Moreover, our findings support a model of virus evolution in which the long-term cocirculation of multiple parvovirus genera in vertebrates reflects the adaptation of each viral genus to fill a distinct ecological niche. Our findings show that efforts to develop parvoviruses as therapeutic tools can be approached from a rational foundation based on comparative evolutionary analysis. To support this, we published our data in the form of an open, extensible, and cross-platform database designed to facilitate the wider utilisation of evolution-related domain knowledge in parvovirus research.


Asunto(s)
Parvovirus , Vertebrados , Animales , Vertebrados/genética , Ecología , Aclimatación , Agricultura , Parvovirus/genética , Mamíferos
13.
Zootaxa ; 5154(5): 501-527, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-36095605

RESUMEN

The Riffle Sculpin (Cottus gulosus) is a small, bottom-dwelling fish regarded as widespread in the cool-water streams that flow into Californias Central Valley and into streams of the central California coast. Using population genomics, supported by other genetic, distributional, and meristic studies, we demonstrate that C. gulosus consists of three cryptic species with four subspecies (five lineages), all but one entirely endemic to California: Cottus pitensis, Pit Sculpin Bailey and Bond 1963 Cottus gulosus, Inland Riffle Sculpin (Girard 1854) g. gulosus: San Joaquin Riffle Sculpin (Girard 1854), nominate subspecies g. wintu: Sacramento Riffle Sculpin, Moyle and Campbell 2022, new subspecies Cottus ohlone, Coastal Riffle Sculpin Moyle and Campbell 2022, new species o. ohlone, Ohlone Riffle Sculpin Moyle and Campbell 2022, nominate subspecies o. pomo, Pomo Riffle Sculpin Moyle and Campbell 2022, new subspecies. The three species are endemic to California watersheds although the range of C. pitensis extends into southeastern Oregon. All are confined to cool headwater streams or to rivers with cold water releases below dams. Their populations are increasingly isolated from one another because of anthropogenic changes to Californias river systems and some are threatened with extinction. Providing taxonomic recognition of the distinct forms will improve conservation efforts on their behalf. This study also demonstrates how genomics can be used to resolve situations where signals from mitochondrial and nuclear DNA are in conflict.


Asunto(s)
Perciformes , Animales , Peces/genética , Agua Dulce , Perciformes/genética , Ríos , Agua
14.
Environ Microbiol ; 24(12): 6493-6509, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36156347

RESUMEN

N2 -fixing heterocytous cyanobacteria are considered to play a minor role in sustaining coastal microbial mat communities developing under normal marine to hypersaline conditions. Here, we investigated microbial mats growing under different salinities from freshwater mats of Giblin River (Tasmania) to metahaline and hypersaline mats of Shark Bay (Western Australia). Analyses of genetic (rRNA and mRNA) and biological markers (heterocyte glycolipids) revealed an unexpectedly large diversity of heterocytous cyanobacteria in all the studied microbial mat communities. It was observed that the taxonomic distribution as well as abundance of cyanobacteria is strongly affected by salinity. Low salinity favoured the presence of heterocytous cyanobacteria in freshwater mats, while mats thriving in higher salinities mainly supported the growth unicellular and filamentous non-heterocytous genera. However, even though mRNA transcripts derived from heterocytous cyanobacteria were lower in Shark Bay (<6%) microbial mats, functional analyses revealed that these diazotrophs were transcribing a substantial proportion of the genes involved in biofilm formation and nitrogen fixation. Overall, our data reveal an unexpectedly high diversity of heterocytous cyanobacteria (e.g. Calothrix, Scytonema, Nodularia, Gloeotrichia, Stigonema, Fischerella and Chlorogloeopsis) that had yet to be described in metahaline and hypersaline microbial mats from Shark Bay and that they play a vital role in sustaining the ecosystem functioning of coastal-marine microbial mat systems.


Asunto(s)
Cianobacterias , Microbiota , Salinidad , Australia , Cianobacterias/genética , Agua Dulce , ARN Mensajero
15.
Nat Ecol Evol ; 6(8): 1211-1220, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35835827

RESUMEN

Spiny-rayed fishes (Acanthomorpha) dominate modern marine habitats and account for more than a quarter of all living vertebrate species. Previous time-calibrated phylogenies and patterns from the fossil record explain this dominance by correlating the origin of major acanthomorph lineages with the Cretaceous-Palaeogene mass extinction. Here we infer a time-calibrated phylogeny using ultraconserved elements that samples 91.4% of all acanthomorph families and investigate patterns of body shape disparity. Our results show that acanthomorph lineages steadily accumulated throughout the Cenozoic and underwent a significant expansion of among-clade morphological disparity several million years after the end-Cretaceous. These acanthomorph lineages radiated into and diversified within distinct regions of morphospace that characterize iconic lineages, including fast-swimming open-ocean predators, laterally compressed reef fishes, bottom-dwelling flatfishes, seahorses and pufferfishes. The evolutionary success of spiny-rayed fishes is the culmination of multiple species-rich and phenotypically disparate lineages independently diversifying across the globe under a wide range of ecological conditions.


Asunto(s)
Biodiversidad , Peces , Animales , Evolución Biológica , Extinción Biológica , Peces/anatomía & histología , Fósiles
16.
G3 (Bethesda) ; 12(8)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35640553

RESUMEN

Migration is a complex phenotypic trait with some species containing migratory and nonmigratory individuals. Such life history variation may be attributed in part to plasticity, epigenetics, or genetics. Although considered semianadromous, recent studies using otolith geochemistry have revealed life history variation within the critically endangered Delta Smelt. Broadly categorizable as migratory or freshwater residents, we examined Restriction site Associated DNA sequencing data to test for a relationship between genetic variation and migratory behaviors. As previously shown, we found no evidence for neutral population genetic structure within Delta Smelt; however, we found significant evidence for associations between genetic variants and life history phenotypes. Furthermore, discriminant analysis of principal components, hierarchical clustering, and machine learning resulted in accurate assignment of fish into the freshwater resident or migratory classes based on their genotypes. These results suggest the presence of adaptive genetic variants relating to life history variation within a panmictic population. Mechanisms that may lead to this observation are genotype dependent habitat choice and spatially variable selection, both of which could operate each generation and are not exclusive. Given that the population of cultured Delta Smelt are being used as a refugial population for conservation, as a supply for wild population supplementation, and currently represent the majority of all living individuals of this species, we recommend that the hatchery management strategy consider the frequencies of life history-associated alleles and how to maintain this important aspect of Delta Smelt biological variation while under captive propagation.


Asunto(s)
Especies en Peligro de Extinción , Osmeriformes , Animales , Agua Dulce , Osmeriformes/genética , Fenotipo , Análisis de Secuencia de ADN
17.
Genome Biol ; 22(1): 332, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34872606

RESUMEN

BACKGROUND: Cytosine modifications in DNA such as 5-methylcytosine (5mC) underlie a broad range of developmental processes, maintain cellular lineage specification, and can define or stratify types of cancer and other diseases. However, the wide variety of approaches available to interrogate these modifications has created a need for harmonized materials, methods, and rigorous benchmarking to improve genome-wide methylome sequencing applications in clinical and basic research. Here, we present a multi-platform assessment and cross-validated resource for epigenetics research from the FDA's Epigenomics Quality Control Group. RESULTS: Each sample is processed in multiple replicates by three whole-genome bisulfite sequencing (WGBS) protocols (TruSeq DNA methylation, Accel-NGS MethylSeq, and SPLAT), oxidative bisulfite sequencing (TrueMethyl), enzymatic deamination method (EMSeq), targeted methylation sequencing (Illumina Methyl Capture EPIC), single-molecule long-read nanopore sequencing from Oxford Nanopore Technologies, and 850k Illumina methylation arrays. After rigorous quality assessment and comparison to Illumina EPIC methylation microarrays and testing on a range of algorithms (Bismark, BitmapperBS, bwa-meth, and BitMapperBS), we find overall high concordance between assays, but also differences in efficiency of read mapping, CpG capture, coverage, and platform performance, and variable performance across 26 microarray normalization algorithms. CONCLUSIONS: The data provided herein can guide the use of these DNA reference materials in epigenomics research, as well as provide best practices for experimental design in future studies. By leveraging seven human cell lines that are designated as publicly available reference materials, these data can be used as a baseline to advance epigenomics research.


Asunto(s)
Epigénesis Genética , Epigenómica/métodos , Control de Calidad , 5-Metilcitosina , Algoritmos , Islas de CpG , ADN/genética , Metilación de ADN , Epigenoma , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Alineación de Secuencia , Análisis de Secuencia de ADN/métodos , Sulfitos , Secuenciación Completa del Genoma/métodos
19.
G3 (Bethesda) ; 11(10)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34568922

RESUMEN

The "genomics era" has allowed questions to be asked about genome organization and genome architecture of non-model species at a rate not previously seen. Analyses of these genome-wide datasets have documented many examples of novel structural variants (SVs) such as chromosomal inversions, copy number variants, and chromosomal translocations, many of which have been linked to adaptation. The salmonids are a taxonomic group with abundant genome-wide datasets due to their importance in aquaculture and fisheries. However, the number of documented SVs in salmonids is surprisingly low and is most likely due to removing loci in high linkage disequilibrium when analyzing structure and gene flow. Here we re-analyze RAD-seq data from several populations of Arctic charr (Salvelinus alpinus) and document a novel ∼1.2 MB SV at the distal end of LG12. This variant contains 15 protein-coding genes connected to a wide-range of functions including cell adhesion and signal transduction. Interestingly, we studied the frequency of this polymorphism in four disjointed populations of charr-one each from Nunavut, Newfoundland, Eastern Russia, and Scotland-and found evidence of the variant only in Nunavut, Canada, suggesting the polymorphism is novel and recently evolved.


Asunto(s)
Inversión Cromosómica , Trucha , Animales , Explotaciones Pesqueras , Genética de Población , Genoma , Trucha/genética
20.
J Hered ; 112(7): 614-625, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34420047

RESUMEN

Genetic changes underlying adaptation vary greatly in terms of complexity and, within the same species, genetic responses to similar selective pressures may or may not be the same. We examine both complex (supergene) and simple (SNP) genetic variants occurring in populations of rainbow trout (Oncorhynchus mykiss) independently isolated from ocean access and compared them to each other and to an anadromous below-barrier population representing their ancestral source to search for signatures of both parallel and nonparallel adaptation. All landlocked populations displayed an increased frequency of a large inversion on chromosome Omy05, while 3 of the 4 populations exhibited elevated frequencies of another inversion located on chromosome Omy20. In addition, we identified numerous regions outside these 2 inversions that also show significant shifts in allele frequencies consistent with adaptive evolution. However, there was little concordance among above-barrier populations in these specific genomic regions under selection. In part, the lack of concordance appears to arise from ancestral autopolyploidy in rainbow trout that provides duplicate genomic regions of similar functional composition for selection to act upon. Thus, while selection acting on landlocked populations universally favors the resident ecotype, outside of the major chromosomal inversions, the resulting genetic changes are largely distinct among populations. Our results indicate that selection on standing genetic variation is likely the primary mode of rapid adaptation, and that both supergene complexes and individual loci contribute to adaptive evolution, further highlighting the diversity of adaptive genomic variation involved in complex phenotypic evolution.


Asunto(s)
Migración Animal , Oncorhynchus mykiss , Adaptación Fisiológica/genética , Animales , Ecotipo , Duplicación de Gen , Genoma , Oncorhynchus mykiss/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...