RESUMEN
BACKGROUND AND HYPOTHESIS: There is mounting evidence that cardiac interoception, the perception of one's heartbeat, is central to affective experiences. It has been proposed that symptoms of psychosis could arise from interoceptive dysfunction. Here we hypothesized that people with psychotic disorders would have a specific impairment in cardiac interoception, over and above broader perceptual deficits. STUDY DESIGN: 43 adults with a history of psychosis (31 schizophrenia, 12 schizoaffective disorder) and 41 matched control participants completed a heart rate discrimination task. Participants responded to whether they perceived a sequence of auditory tones to be faster or slower than their heart rate. By trialing a range of auditory tone rates, we estimated a threshold for each participant, the difference between perceived heart rate and actual heart rate. To test whether differences were specific to interoception, participants completed an exteroceptive control condition, testing their discrimination of the rate of 2 sets of audible sounds instead of heart rate. STUDY RESULTS: Participants with a history of psychosis had greater absolute differences between perceived and actual heart rate, indicating over- or under-estimation of heart rate compared to healthy controls. This difference was specific to the interoceptive condition, and not explained by group differences in exteroceptive perception. CONCLUSIONS: Psychotic disorders are associated with misestimation of heart rate. Further research may elucidate whether interoceptive abnormalities contribute to specific symptoms such as somatic delusions or affective features, and whether interoception could be a treatment target in psychotic disorders.
RESUMEN
Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.org/ ) harnesses a comprehensive and growing suite of neuroimaging software containers. Neurodesk includes a browser-accessible virtual desktop, command-line interface and computational notebook compatibility, allowing for accessible, flexible, portable and fully reproducible neuroimaging analysis on personal workstations, high-performance computers and the cloud.
Asunto(s)
Neuroimagen , Programas Informáticos , Neuroimagen/métodos , Humanos , Interfaz Usuario-Computador , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagenRESUMEN
Neuroimaging data analysis often requires purpose-built software, which can be challenging to install and may produce different results across computing environments. Beyond being a roadblock to neuroscientists, these issues of accessibility and portability can hamper the reproducibility of neuroimaging data analysis pipelines. Here, we introduce the Neurodesk platform, which harnesses software containers to support a comprehensive and growing suite of neuroimaging software (https://www.neurodesk.org/). Neurodesk includes a browser-accessible virtual desktop environment and a command line interface, mediating access to containerized neuroimaging software libraries on various computing platforms, including personal and high-performance computers, cloud computing and Jupyter Notebooks. This community-oriented, open-source platform enables a paradigm shift for neuroimaging data analysis, allowing for accessible, flexible, fully reproducible, and portable data analysis pipelines.
RESUMEN
Dyadic interactions require dynamic correspondence between one's own movements and those of the other agent. This mapping is largely viewed as imitative, with the behavioural hallmark being a reaction-time cost for mismatched actions. Yet the complex motor patterns humans enact together extend beyond direct-matching, varying adaptively between imitation, complementary movements, and counter-imitation. Optimal behaviour requires an agent to predict not only what is likely to be observed but also how that observed action will relate to their own motor planning. In 28 healthy adults, we examined imitation and counter-imitation in a task that varied the likelihood of stimulus-response congruence from highly predictable, to moderately predictable, to unpredictable. To gain mechanistic insights into the statistical learning of stimulus-response compatibility, we compared two computational models of behaviour: (1) a classic fixed learning-rate model (Rescorla-Wagner reinforcement [RW]) and (2) a hierarchical model of perceptual-behavioural processes in which the learning rate adapts to the inferred environmental volatility (hierarchical Gaussian filter [HGF]). Though more complex and hence penalized by model selection, the HGF provided a more likely model of the participants' behaviour. Matching motor responses were only primed (faster) in the most experimentally volatile context. This bias was reversed so that mismatched actions were primed when beliefs about volatility were lower. Inferential statistics indicated that matching responses were only primed in unpredictable contexts when stimuli-response congruence was at 50:50 chance. Outside of these unpredictable blocks the classic stimulus-response compatibility effect was reversed: Incongruent responses were faster than congruent ones. We show that hierarchical Bayesian learning of environmental statistics may underlie response priming during dyadic interactions.
Asunto(s)
Conducta Imitativa , Aprendizaje , Adulto , Humanos , Tiempo de Reacción/fisiología , Teorema de Bayes , Conducta Imitativa/fisiologíaRESUMEN
Perceiving, anticipating and responding to the actions of another person are fundamentally entwined processes such that seeing another's movement can prompt automatic imitation, as in social mimicry and contagious yawning. Yet the direct-matching of others' movements is not always appropriate, so this tendency must be controlled. This necessitates the hierarchical integration of the systems for action mirroring with domain-general control networks. Here we use functional magnetic resonance imaging (fMRI) and computational modelling to examine the top-down and context-dependent modulation of mirror representations and their influence on motor planning. Participants performed actions that either intentionally or incidentally imitated, or counter-imitated, an observed action. Analyses of these fMRI data revealed a region in the mid-occipital gyrus (MOG) where activity differed between imitation versus counter-imitation in a manner that depended on whether this was intentional or incidental. To identify broader cortical network mechanisms underlying this interaction between intention and imitativeness, we used dynamic causal modelling to pose specific hypotheses which embody assumptions about inter-areal interactions and contextual modulations. These models each incorporated four regions - medial temporal V5 (early motion perception), MOG (action-observation), supplementary motor area (action planning), and anterior insula (executive control) - but differ in their interactions and hierarchical structure. The best model of our data afforded a crucial role for the anterior insula, gating the interaction of supplementary motor area and MOG activity. This provides a novel brain network-based account of task-dependent control over the integration of motor planning and mirror systems, with mirror responses suppressed for intentional counter-imitation.
Asunto(s)
Conducta Imitativa , Corteza Motora , Encéfalo , Mapeo Encefálico , Humanos , Imagen por Resonancia MagnéticaRESUMEN
Perception and action are inextricably linked, down to the level of single cells which have both visual and motor response properties - dubbed 'mirror neurons'. The mirror neuron system is generally associated with direct-matching or resonance between observed and executed actions (and goals). Yet in everyday interactions responding to another's movements with matching actions (or goals) is not always appropriate. Here we examine processes associated with intentionally not imitating, as separable from merely detecting an observed action as mismatching one's own. Using fMRI, we test how matched and mismatched stimulus-response mapping for actions is modulated depending on task-relevance. Participants were either cued to intentionally copy or oppose a presented action (intentional imitation or counter-imitation), or cued to perform a predefined action regardless of the presented action (incidental imitation or counter-imitation). We found distinct cortical networks underlying imitation compared to counter-imitation, involving areas typically associated with an action observation network and widespread occipital activation. Intentionally counter-imitating particularly involved frontal-parietal networks, including the insula and cingulate cortices. This task-dependent recruitment of frontal networks for the intentional selection of opposing responses supports previous evidence for the preparatory suppression of imitative responses. Sensorimotor mirroring is modulated via control processes, which complex human interactions often require.
Asunto(s)
Corteza Cerebral/fisiología , Conducta Imitativa/fisiología , Percepción de Movimiento/fisiología , Actividad Motora/fisiología , Autocontrol , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Inhibición Psicológica , Imagen por Resonancia Magnética , Masculino , Neuronas Espejo/fisiología , Tiempo de Reacción , Adulto JovenRESUMEN
All interpersonal interactions are underpinned by action: perceiving and understanding the actions of others, and responding by planning and performing self-made actions. Perception of action, both self-made and observed, informs ongoing motor responses by iterative feedback within a perception-action loop. This fundamental phenomenon occurs within single-cells of the macaque brain which demonstrate sensory and motor response properties. These 'mirror' neurons have led to a swathe of research leading to the broadly accepted idea of a human mirror system. The current review examines the putative human mirror system literature to highlight several inconsistencies in comparison to the seminal macaque data, and ongoing controversies within human focused research (including mirror neuron origin and function). In particular, we will address the often-neglected other side to the 'mirror': complementary and opposing actions. We propose that engagement of the mirror system in meeting changing task-demands is dynamically modulated via frontal control networks.
Asunto(s)
Conducta Imitativa , Neuronas Espejo , Encéfalo , Humanos , Relaciones Interpersonales , Desempeño PsicomotorRESUMEN
Voluntary actions require the concurrent engagement and coordinated control of complex temporal (e.g., rhythm) and ordinal motor processes. Using high-resolution functional magnetic resonance imaging (fMRI) and multi-voxel pattern analysis (MVPA), we sought to determine the degree to which these complex motor processes are dissociable in basal ganglia and cortical networks. We employed three different finger-tapping tasks that differed in the demand on the sequential temporal rhythm or sequential ordering of submovements. Our results demonstrate that sequential rhythm and sequential order tasks were partially dissociable based on activation differences. The sequential rhythm task activated a widespread network centered around the supplementary motor area (SMA) and basal-ganglia regions including the dorsomedial putamen and caudate nucleus, while the sequential order task preferentially activated a fronto-parietal network. There was also extensive overlap between sequential rhythm and sequential order tasks, with both tasks commonly activating bilateral premotor, supplementary motor, and superior/inferior parietal cortical regions, as well as regions of the caudate/putamen of the basal ganglia and the ventro-lateral thalamus. Importantly, within the cortical regions that were active for both complex movements, MVPA could accurately classify different patterns of activation for the sequential rhythm and sequential order tasks. In the basal ganglia, however, overlapping activation for the sequential rhythm and sequential order tasks, which was found in classic motor circuits of the putamen and ventro-lateral thalamus, could not be accurately differentiated by MVPA. Overall, our results highlight the convergent architecture of the motor system, where complex motor information that is spatially distributed in the cortex converges into a more compact representation in the basal ganglia.
RESUMEN
Long-term potentiation (LTP) and long-term depression (LTD) are key mechanisms of synaptic plasticity that are thought to act in concert to shape neural connections. Here we investigated the influence of visual spatial attention on LTP-like and LTD-like plasticity in the human motor cortex. Plasticity was induced using paired associative stimulation (PAS), which involves repeated pairing of peripheral nerve stimulation and transcranial magnetic stimulation to alter functional responses in the thumb area of the primary motor cortex. PAS-induced changes in cortical excitability were assessed using motor-evoked potentials. During plasticity induction, participants directed their attention to one of two visual stimulus streams located adjacent to each hand. When participants attended to visual stimuli located near the left thumb, which was targeted by PAS, LTP-like increases in excitability were significantly enhanced, and LTD-like decreases in excitability reduced, relative to when they attended instead to stimuli located near the right thumb. These differential effects on (bidirectional) LTP-like and LTD-like plasticity suggest that voluntary visual attention can exert an important influence on the functional organization of the motor cortex. Specifically, attention acts to both enhance the strengthening and suppress the weakening of neural connections representing events that fall within the focus of attention.
Asunto(s)
Atención/fisiología , Corteza Motora/fisiología , Plasticidad Neuronal/fisiología , Percepción Visual/fisiología , Adulto , Estimulación Eléctrica , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Masculino , Estimulación Magnética Transcraneal , Adulto JovenRESUMEN
When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.