Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Bioinformatics ; 24(1): 221, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259021

RESUMEN

BACKGROUND: As genome sequencing becomes better integrated into scientific research, government policy, and personalized medicine, the primary challenge for researchers is shifting from generating raw data to analyzing these vast datasets. Although much work has been done to reduce compute times using various configurations of traditional CPU computing infrastructures, Graphics Processing Units (GPUs) offer opportunities to accelerate genomic workflows by orders of magnitude. Here we benchmark one GPU-accelerated software suite called NVIDIA Parabricks on Amazon Web Services (AWS), Google Cloud Platform (GCP), and an NVIDIA DGX cluster. We benchmarked six variant calling pipelines, including two germline callers (HaplotypeCaller and DeepVariant) and four somatic callers (Mutect2, Muse, LoFreq, SomaticSniper). RESULTS: We achieved up to 65 × acceleration with germline variant callers, bringing HaplotypeCaller runtimes down from 36 h to 33 min on AWS, 35 min on GCP, and 24 min on the NVIDIA DGX. Somatic callers exhibited more variation between the number of GPUs and computing platforms. On cloud platforms, GPU-accelerated germline callers resulted in cost savings compared with CPU runs, whereas some somatic callers were more expensive than CPU runs because their GPU acceleration was not sufficient to overcome the increased GPU cost. CONCLUSIONS: Germline variant callers scaled well with the number of GPUs across platforms, whereas somatic variant callers exhibited more variation in the number of GPUs with the fastest runtimes, suggesting that, at least with the version of Parabricks used here, these workflows are less GPU optimized and require benchmarking on the platform of choice before being deployed at production scales. Our study demonstrates that GPUs can be used to greatly accelerate genomic workflows, thus bringing closer to grasp urgent societal advances in the areas of biosurveillance and personalized medicine.


Asunto(s)
Gráficos por Computador , Programas Informáticos , Flujo de Trabajo , Genómica
2.
Front Immunol ; 12: 700790, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220864

RESUMEN

In this review, we examine senescent cells and the overlap between the direct biological impact of senescence and the indirect impact senescence has via its effects on other cell types, particularly the macrophage. The canonical roles of macrophages in cell clearance and in other physiological functions are discussed with reference to their functions in diseases of the kidney and other organs. We also explore the translational potential of different approaches based around the macrophage in future interventions to target senescent cells, with the goal of preventing or reversing pathologies driven or contributed to in part by senescent cell load in vivo.


Asunto(s)
Envejecimiento/patología , Senescencia Celular/fisiología , Fibrosis/patología , Macrófagos , Envejecimiento/inmunología , Animales , Fibrosis/inmunología , Humanos , Riñón/patología
3.
Microbiol Resour Announc ; 10(19)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986073

RESUMEN

Here, we describe genome sequences of 17 Pseudomonas aeruginosa phages, including therapeutic candidates. They belong to the families Myoviridae, Podoviridae, and Siphoviridae and six different genera. The genomes ranged in size from 42,788 to 88,805 bp, with G+C contents of 52.5% to 64.3% and numbers of coding sequences from 58 to 179.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...