Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Transl Vis Sci Technol ; 13(2): 9, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345550

RESUMEN

Purpose: This study aims to assess the efficacy of two aprepitant formulations (X1 and X2), in a preclinical model of dry eye disease (DED) induced by benzalkonium chloride (BAK). Methods: Two aprepitant formulations were tested on 7 to 8-week-old male mice for their efficacy. In vivo corneal fluorescein staining assessed epithelial damage as the primary end point on days 0, 3, 5, 7, 9, 12, and 14 using slit-lamp microscopy. The DED model was induced with 0.2% BAK twice daily for the first week and once daily for the next week. Mice were randomly assigned to 5 treatment groups: Aprepitant X1 (n = 10) and X2 (n = 10) formulation, 2 mg/mL dexamethasone (n = 10), control vehicle X (n = 10), 0.2% hyaluronic acid (n = 10), or no treatment (n = 10). Eye wiping, phenol red, and Cochet Bonnet tests assessed ocular pain, tear fluid secretion, and nerve function. After 7 days, the mice were euthanized to quantify leukocyte infiltration and corneal nerve density. Results: Topical aprepitant X1 reduced BAK-induced corneal damage and pain compared to gel vehicle X (P = 0.007) and dexamethasone (P = 0.021). Aprepitant X1 and X2 improved corneal sensitivity versus gel vehicle X and dexamethasone (P < 0.001). Aprepitant X1 reduced leukocyte infiltration (P < 0.05) and enhanced corneal nerve density (P < 0.001). Tear fluid secretion remained statistically unchanged in both the X1 and X2 groups. Conclusions: Aprepitant formulation X1 reduced pain, improved corneal sensitivity and nerve density, ameliorated epitheliopathy, and reduced leukocyte infiltration in male mouse corneas. Translational Relevance: Aprepitant emerges as a safe, promising therapeutic prospect for the amelioration of DED's associated symptoms.


Asunto(s)
Córnea , Dolor , Masculino , Ratones , Animales , Aprepitant/farmacología , Fluoresceína , Dexametasona/farmacología , Dexametasona/uso terapéutico
2.
Nucleic Acids Res ; 50(5): 2587-2602, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35137201

RESUMEN

The histone acetyltransferase p300 (also known as KAT3B) is a general transcriptional coactivator that introduces the H3K27ac mark on enhancers triggering their activation and gene transcription. Genome-wide screenings demonstrated that a large fraction of long non-coding RNAs (lncRNAs) plays a role in cellular processes and organ development although the underlying molecular mechanisms remain largely unclear (1,2). We found 122 lncRNAs that interacts directly with p300. In depth analysis of one of these, lncSmad7, is required to maintain ESC self-renewal and it interacts to the C-terminal domain of p300. lncSmad7 also contains predicted RNA-DNA Hoogsteen forming base pairing. Combined Chromatin Isolation by RNA precipitation followed by sequencing (ChIRP-seq) together with CRISPR/Cas9 mutagenesis of the target sites demonstrate that lncSmad7 binds and recruits p300 to enhancers in trans, to trigger enhancer acetylation and transcriptional activation of its target genes. Thus, these results unveil a new mechanism by which p300 is recruited to the genome.


Asunto(s)
Histonas , ARN Largo no Codificante , Acetilación , Acetiltransferasas/metabolismo , Cromatina/genética , Elementos de Facilitación Genéticos , Histonas/genética , Histonas/metabolismo , ARN Largo no Codificante/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...