Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Clin Exp Metastasis ; 39(6): 865-881, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36002598

RESUMEN

Microenvironmental changes in the early metastatic niche may be exploited to identify therapeutic targets to inhibit secondary tumor formation and improve disease outcomes. We dissected the developing lung metastatic niche in a model of metastatic, triple-negative breast cancer using single-cell RNA-sequencing. Lungs were extracted from mice at 7-, 14-, or 21 days after tumor inoculation corresponding to the pre-metastatic, micro-metastatic, and metastatic niche, respectively. The progression of the metastatic niche was marked by an increase in neutrophil infiltration (5% of cells at day 0 to 81% of cells at day 21) and signaling pathways corresponding to the hallmarks of cancer. Importantly, the pre-metastatic and early metastatic niche were composed of immune cells with an anti-cancer phenotype not traditionally associated with metastatic disease. As expected, the metastatic niche exhibited pro-cancer phenotypes. The transition from anti-cancer to pro-cancer phenotypes was directly associated with neutrophil and monocyte behaviors at these time points. Predicted metabolic, transcription factor, and receptor-ligand signaling suggested that changes in the neutrophils likely induced the transitions in the other immune cells. Conditioned medium generated by cells extracted from the pre-metastatic niche successfully inhibited tumor cell proliferation and migration in vitro and the in vivo depletion of pre-metastatic neutrophils and monocytes worsened survival outcomes, thus validating the anti-cancer phenotype of the developing niche. Genes associated with the early anti-cancer response could act as biomarkers that could serve as targets for the treatment of early metastatic disease. Such therapies have the potential to revolutionize clinical outcomes in metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Femenino , Línea Celular Tumoral , Neoplasias Pulmonares/patología , Pulmón/patología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Fenotipo , ARN/metabolismo , Neoplasias de la Mama/patología , Microambiente Tumoral , Metástasis de la Neoplasia/patología
3.
Bioessays ; 42(9): e2000083, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32638413

RESUMEN

Several metabolites serve as substrates for histone modifications and communicate changes in the metabolic environment to the epigenome. Technologies such as metabolomics and proteomics have allowed us to reconstruct the interactions between metabolic pathways and histones. These technologies have shed light on how nutrient availability can have a dramatic effect on various histone modifications. This metabolism-epigenome cross talk plays a fundamental role in development, immune function, and diseases like cancer. Yet, major challenges remain in understanding the interactions between cellular metabolism and the epigenome. How the levels and fluxes of various metabolites impact epigenetic marks is still unclear. Discussed herein are recent applications and the potential of systems biology methods such as flux tracing and metabolic modeling to address these challenges and to uncover new metabolic-epigenetic interactions. These systems approaches can ultimately help elucidate how nutrients shape the epigenome of microbes and mammalian cells.


Asunto(s)
Código de Histonas , Lectura , Animales , Epigénesis Genética , Epigenómica , Histonas/genética , Histonas/metabolismo , Humanos , Nutrientes
4.
Cancer Metab ; 8: 5, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411371

RESUMEN

BACKGROUND: Tumor initiation and progression are associated with numerous metabolic alterations. However, the biochemical drivers and constraints that contribute to metabolic gene dysregulation are unclear. METHODS: Here, we present MetOncoFit, a computational model that integrates 142 metabolic features that can impact tumor fitness, including enzyme catalytic activity, pathway association, network topology, and reaction flux. MetOncoFit uses genome-scale metabolic modeling and machine-learning to quantify the relative importance of various metabolic features in predicting cancer metabolic gene expression, copy number variation, and survival data. RESULTS: Using MetOncoFit, we performed a meta-analysis of 9 cancer types and over 4500 samples from TCGA, Prognoscan, and COSMIC tumor databases. MetOncoFit accurately predicted enzyme differential expression and its impact on patient survival using the 142 attributes of metabolic enzymes. Our analysis revealed that enzymes with high catalytic activity were frequently upregulated in many tumors and associated with poor survival. Topological analysis also identified specific metabolites that were hot spots of dysregulation. CONCLUSIONS: MetOncoFit integrates a broad range of datasets to understand how biochemical and topological features influence metabolic gene dysregulation across various cancer types. MetOncoFit was able to achieve significantly higher accuracy in predicting differential expression, copy number variation, and patient survival than traditional modeling approaches. Overall, MetOncoFit illuminates how enzyme activity and metabolic network architecture influences tumorigenesis.

5.
Cancer Metab ; 8: 1, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31908776

RESUMEN

BACKGROUND: Metabolic programs in cancer cells are influenced by genotype and the tissue of origin. We have previously shown that central carbon metabolism is rewired in pancreatic ductal adenocarcinoma (PDA) to support proliferation through a glutamate oxaloacetate transaminase 1 (GOT1)-dependent pathway. METHODS: We utilized a doxycycline-inducible shRNA-mediated strategy to knockdown GOT1 in PDA and colorectal cancer (CRC) cell lines and tumor models of similar genotype. These cells were analyzed for the ability to form colonies and tumors to test if tissue type impacted GOT1 dependence. Additionally, the ability of GOT1 to impact the response to chemo- and radiotherapy was assessed. Mechanistically, the associated specimens were examined using a combination of steady-state and stable isotope tracing metabolomics strategies and computational modeling. Statistics were calculated using GraphPad Prism 7. One-way ANOVA was performed for experiments comparing multiple groups with one changing variable. Student's t test (unpaired, two-tailed) was performed when comparing two groups to each other. Metabolomics data comparing three PDA and three CRC cell lines were analyzed by performing Student's t test (unpaired, two-tailed) between all PDA metabolites and CRC metabolites. RESULTS: While PDA exhibits profound growth inhibition upon GOT1 knockdown, we found CRC to be insensitive. In PDA, but not CRC, GOT1 inhibition disrupted glycolysis, nucleotide metabolism, and redox homeostasis. These insights were leveraged in PDA, where we demonstrate that radiotherapy potently enhanced the effect of GOT1 inhibition on tumor growth. CONCLUSIONS: Taken together, these results illustrate the role of tissue type in dictating metabolic dependencies and provide new insights for targeting metabolism to treat PDA.

6.
Methods Mol Biol ; 2088: 299-313, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893379

RESUMEN

The metabolic activity of a mammalian cell changes dynamically over time and is tied to the changing metabolic demands of cellular processes such as cell differentiation and proliferation. While experimental tools like time-course metabolomics and flux tracing can measure the dynamics of a few pathways, they are unable to infer fluxes at the whole network level. To address this limitation, we have developed the Dynamic Flux Activity (DFA) algorithm, a genome-scale modeling approach that uses time-course metabolomics to predict dynamic flux rewiring during transitions between metabolic states. This chapter provides a protocol for applying DFA to characterize the dynamic metabolic activity of various cancer cell lines.


Asunto(s)
Análisis de Flujos Metabólicos/métodos , Redes y Vías Metabólicas/fisiología , Metabolómica/métodos , Algoritmos , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/fisiología , Genoma/genética , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Mamíferos/fisiología , Redes y Vías Metabólicas/genética , Neoplasias/genética , Neoplasias/metabolismo
7.
J Nat Prod ; 80(3): 684-691, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28128950

RESUMEN

HeLa cell-based cytological profiling (CP) was applied to an extract library of marine sediment-derived actinomycetes to discover new cytotoxic secondary metabolites. Among the hit strains, Streptomyces sp. CP26-58 was selected for further investigation to identify its cytotoxic metabolites. CP revealed that the known ionophore tetronasin (1) was responsible for the cytotoxic effect found in the extract. Furthermore, three naphthoquinone meroterpenoids, naphthablin A (2) and two new derivatives designated as naphthablins B (3) and C (4), were isolated from other cytotoxic fractions. The structures of the new compounds were elucidated based on analysis of their HRESIMS and comprehensive NMR data. The absolute configurations of the new compounds were deduced by simulating ECD spectra and calculating potential energies for the model compounds using density function theory (DFT) calculations. Compound 1 showed a significant cytotoxic effect against HeLa cells with an IC50 value of 0.23 µM, and CP successfully clustered 1 with calcium ionophores.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Sedimentos Geológicos/química , Streptomyces/química , Terpenos/aislamiento & purificación , Terpenos/farmacología , Antibacterianos/farmacología , Antineoplásicos/química , Células HeLa , Humanos , Concentración 50 Inhibidora , Biología Marina , Estructura Molecular , Naftoquinonas , Resonancia Magnética Nuclear Biomolecular , Terpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA