Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(8): e44091, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22937157

RESUMEN

Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and are located in a highly dynamic microenvironment called "niche" that influences all aspects of stem cell function, including homing, self-renewal and differentiation. Several studies have recently identified specific proteins that regulate the fate of SSCs. These studies also aimed at identifying surface markers that would facilitate the isolation of these cells in different vertebrate species. The present study is the first to investigate SSC physiology and niche in stallions and to offer a comparative evaluation of undifferentiated type A spermatogonia (Aund) markers (GFRA1, PLZF and CSF1R) in three different domestic equid species (stallions, donkeys, and mules). Aund were first characterized according to their morphology and expression of the GFRA1 receptor. Our findings strongly suggest that in stallions these cells were preferentially located in the areas facing the interstitium, particularly those nearby blood vessels. This distribution is similar to what has been observed in other vertebrate species. In addition, all three Aund markers were expressed in the equid species evaluated in this study. These markers have been well characterized in other mammalian species, which suggests that the molecular mechanisms that maintain the niche and Aund/SSCs physiology are conserved among mammals. We hope that our findings will help future studies needing isolation and cryopreservation of equids SSCs. In addition, our data will be very useful for studies that aim at preserving the germplasm of valuable animals, and involve germ cell transplantation or xenografts of equids testis fragments/germ cells suspensions.


Asunto(s)
Equidae/fisiología , Espermatogénesis/fisiología , Espermatogonias/citología , Nicho de Células Madre/fisiología , Células Madre/citología , Animales , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Espermatogonias/metabolismo , Células Madre/metabolismo , Testículo/citología , Testículo/metabolismo
2.
Biol Reprod ; 86(5): 155, 1-10, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22262689

RESUMEN

In the seminiferous epithelium, spermatogonial stem cells (SSCs) are located in a particular environment called the "niche" that is controlled by the basement membrane, key testis somatic cells, and factors originating from the vascular network. However, the role of Leydig cells (LCs) as a niche component is not yet clearly elucidated. Recent studies showed that peccaries (Tayassu tajacu) present a peculiar LC cytoarchitecture in which these cells are located around the seminiferous tubule lobes, making the peccary a unique model for investigating the SSC niche. This peculiarity allowed us to subdivide the seminiferous tubule cross-sections in three different testis parenchyma regions (tubule-tubule, tubule-interstitium, and tubule-LC contact). Our aims were to characterize the different spermatogonial cell types and to determine the location and/or distribution of the SSCs along the seminiferous tubules. Compared to differentiating spermatogonia, undifferentiated spermatogonia (A(und)) presented a noticeably higher nuclear volume (P < 0.05), allowing an accurate evaluation of their distribution. Immunostaining analysis demonstrated that approximately 93% of A(und) were GDNF receptor alpha 1 positive (GFRA1(+)), and these cells were preferentially located adjacent to the interstitial compartment without LCs (P < 0.05). The expression of colony-stimulating factor 1 was observed in LCs and peritubular myoid cells (PMCs), whereas its receptor was present in LCs and in GFRA1(+) A(und). Taken together, our findings strongly suggest that LCs, different from PMCs, might play a minor role in the SSC niche and physiology and that these steroidogenic cells are probably involved in the differentiation of A(und) toward type A(1) spermatogonia.


Asunto(s)
Espermatogonias/metabolismo , Nicho de Células Madre/fisiología , Animales , Artiodáctilos/fisiología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/análisis , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/metabolismo , Factor Estimulante de Colonias de Macrófagos/biosíntesis , Masculino , Receptor de Factor Estimulante de Colonias de Macrófagos/análisis , Túbulos Seminíferos/citología , Espermatogénesis/fisiología , Espermatogonias/citología , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...