Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 368: 122129, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39163670

RESUMEN

Agent-based models represent a promising approach for simulating transport systems and assessing their environmental noise impact, potentially enhancing standard noise exposure assessments. However, it is very important to understand the relevance of these assessments within the context of models initially designed for transport studies. Then, this research investigates the utilization of agent-based transport models when coupled with environmental models to assess individual exposure to transport-related noise. This is achieved by proposing a method to evaluate this approach across four dimensions: spatial, temporal, individual, and activity patterns. This evaluation is demonstrated and discussed with an exemplification model applied in the Lyon Metropolitan Area using open-source tools (MATSim, EQASim, NoiseModelling), which is a representative framework of the current literature. The findings encompass a range of issues, including the conceptualization of exposure contexts and activity spaces, the resolution of the acoustic content, the disaggregation of data at the individual level, the variability in noise reactions, and the correlation structures between social and exposure profiles. The study contributes to the advancement of exposure assessment with insights for future improvements in the field. Further, it underscores the need for more quantitative analyses and scientific research into momentary noise exposure and social epidemiology.

2.
Sensors (Basel) ; 24(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38400417

RESUMEN

Environmental noise control is a major health and social issue. Numerous environmental policies require local authorities to draw up noise maps to establish an inventory of the noise environment and then propose action plans to improve its quality. In general, these maps are produced using numerical simulations, which may not be sufficiently representative, for example, concerning the temporal dynamics of noise levels. Acoustic sensor measurements are also insufficient in terms of spatial coverage. More recently, an alternative approach has been proposed, consisting of using citizens as data producers by using smartphones as tools of geo-localized acoustic measurement. However, a lack of calibration of smartphones can generate a significant bias in the results obtained. Against the classical metrological principle that would aim to calibrate any sensor beforehand for physical measurement, some have proposed mass calibration procedures called "blind calibration". The method is based on the crossing of sensors in the same area at the same time, which are therefore supposed to observe the same phenomenon (i.e., measure the same value). The multiple crossings of a large number of sensors at the scale of a territory and the analysis of the relationships between sensors allow for the calibration of the set of sensors. In this article, we propose to adapt a blind calibration method to data from the NoiseCapture smartphone application. The method's behavior is then tested on NoiseCapture datasets for which information on the calibration values of some smartphones is already available.

3.
J Acoust Soc Am ; 151(5): 3255, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35649919

RESUMEN

Teaching science subjects such as acoustics to youth or the general public can be facilitated by illustrating physical phenomena or scientific issues using fun experiences. A few years ago, our team developed a smartphone application named NoiseCapture with the aim of offering to anyone the opportunity to measure their sound environment and to share their geolocated measurements with the community in order to build a collective noise map. Since then, NoiseCapture team members have experimented with numerous interventions in schools or scientific events for the general public based on the app to explain not only societal and environmental issues related to noise but also to teach acoustic notions and to address technical and scientific topics associated with sound measurement. This paper describes some of the interventions implemented, in particular, in a school context through training courses given to middle school and university students, as well as teachers of secondary school, that focused on basic knowledge of buildings and environmental acoustics, on the practice of acoustic measurement, and on noise mapping. Some examples of interventions with the general public are also presented that were mostly integrated into scientific events.


Asunto(s)
Aplicaciones Móviles , Acústica , Adolescente , Humanos , Ruido , Instituciones Académicas , Teléfono Inteligente
4.
J Acoust Soc Am ; 151(2): 911, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35232079

RESUMEN

As part of the Agence Nationale de Recherche Caractérisation des ENvironnements SonorEs urbains (Characterization of urban sound environments) project, a questionnaire was sent in January 2019 to households in a 1 km2 study area in the city of Lorient, France, to which about 318 responded. The main objective of this questionnaire was to collect information about the inhabitants' perception of the sound environments in their neighborhoods, streets, and dwellings. In the same study area, starting mid-2019, about 70 sensors were continuously positioned, and 15 of them were selected for testing sound source recognition models. The French lockdown due to the COVID-19 crisis occurred during the project, and the opportunity was taken to send a second questionnaire during April 2020. About 31 of the first 318 first survey respondents answered this second questionnaire. This unique longitudinal dataset, both physical and perceptual, allows the undertaking of an analysis from different perspectives of such a period. The analysis reveals the importance of integrating source recognition tools, soundscape observation protocol, in addition to physical level analysis, to accurately describe the changes in the sound environment.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Humanos , Ruido/efectos adversos , SARS-CoV-2 , Sonido
5.
J Acoust Soc Am ; 149(6): 3961, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34241477

RESUMEN

This study aims to produce dynamic noise maps based on a noise model and acoustic measurements. To do so, inverse modeling and joint state-parameter methods are proposed. These methods estimate the input parameters that optimize a given cost function calculated with the resulting noise map and the noise observations. The accuracy of these two methods is compared with a noise map generated with a meta-model and with a classical data assimilation method called best linear unbiased estimator. The accuracy of the data assimilation processes is evaluated using a "leave-one-out" cross-validation method. The most accurate noise map is generated computing a joint state-parameter estimation algorithm without a priori knowledge about traffic and weather and shows a reduction of approximately 26% in the root mean square error from 3.5 to 2.6 dB compared to the reference meta-model noise map with 16 microphones over an area of 3 km2.

6.
J Acoust Soc Am ; 148(6): 3671, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33379895

RESUMEN

Urban noise mapping generally consists of simulating the emission and attenuation of noise in an area by following rules such as common noise assessment methods. The computational cost makes these models unsuitable for applications such as uncertainty quantification, where thousands of simulations may be required. One solution is to replace the model with a meta-model that reproduces the expected noise levels with highly reduced computational costs. The strategy is to generate the meta-model in three steps. The first step is to generate a training sample exploring the large dimension model's inputs set. The second step is to reduce the dimension of the outputs. In the third step, statistical interpolators are defined between the projected values of the training sample over the reduced space of the outputs. Radial basis functions or kriging are used as interpolators. The meta-model was built using the open source software NoiseModelling. This study compares the proximity of the meta-model outputs to the model outputs against the reduced basis, the class of the kriging covariance function, and the training sample size. Simulations using the meta-model are more than 10 000 times faster than the model while maintaining the main behavior.

7.
Artículo en Inglés | MEDLINE | ID: mdl-32545587

RESUMEN

Many countries around the world have chosen lockdown and restrictions on people's mobility as the main strategies to combat the COVID-19 pandemic. These actions have significantly affected environmental noise and modified urban soundscapes, opening up an unprecedented opportunity for research in the field. In order to enable these investigations to be carried out in a more harmonized and consistent manner, this paper makes a proposal for a set of indicators that will enable to address the challenge from a number of different approaches. It proposes a minimum set of basic energetic indicators, and the taxonomy that will allow their communication and reporting. In addition, an extended set of descriptors is outlined which better enables the application of more novel approaches to the evaluation of the effect of this new soundscape on people's subjective perception.


Asunto(s)
Infecciones por Coronavirus , Ruido , Pandemias , Neumonía Viral , Betacoronavirus , COVID-19 , Humanos , SARS-CoV-2
8.
Sensors (Basel) ; 20(8)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316202

RESUMEN

Noise pollution reduction in the environment is a major challenge from a societal and health point of view. To implement strategies to improve sound environments, experts need information on existing noise. The first source of information is based on the elaboration of noise maps using software, but with limitations on the realism of the maps obtained, due to numerous calculation assumptions. The second is based on the use of measured data, in particular through professional measurement observatories, but in limited numbers for practical and financial reasons. More recently, numerous technical developments, such as the miniaturization of electronic components, the accessibility of low-cost computing processors and the improved performance of electric batteries, have opened up new prospects for the deployment of low-cost sensor networks for the assessment of sound environments. Over the past fifteen years, the literature has presented numerous experiments in this field, ranging from proof of concept to operational implementation. The purpose of this article is firstly to review the literature, and secondly, to identify the expected technical characteristics of the sensors to address the problem of noise pollution assessment. Lastly, the article will also put forward the challenges that are needed to respond to a massive deployment of low-cost noise sensors.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Ruido , Ciudades , Monitoreo del Ambiente/economía , Diseño de Equipo/economía , Tecnología Inalámbrica/instrumentación
9.
J Acoust Soc Am ; 143(5): 2847, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29857752

RESUMEN

Network-based sound monitoring systems are deployed in various cities over the world and mobile applications allowing participatory sensing are now common. Nevertheless, the sparseness of the collected measurements, either in space or in time, complicates the production of sound maps. This paper describes the results of a measurement campaign that has been conducted in order to test different spatial interpolation strategies for producing sound maps. Mobile measurements have been performed while walking multiple times in every street of the XIIIth district of Paris. By adaptively constructing a noise map on the basis of these measurements, the role of the density of observations and the performance of four different interpolation strategies is investigated. Ordinary and universal Kriging methods are assessed, as well as the effect of using an alternative definition of the distance between observation locations, which takes the topology of the road network into account. The results show that a high density of observation points is necessary to obtain an interpolated sound map close to the reference map.

10.
Sensors (Basel) ; 17(12)2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29186021

RESUMEN

The spreading of urban areas and the growth of human population worldwide raise societal and environmental concerns. To better address these concerns, the monitoring of the acoustic environment in urban as well as rural or wilderness areas is an important matter. Building on the recent development of low cost hardware acoustic sensors, we propose in this paper to consider a sensor grid approach to tackle this issue. In this kind of approach, the crucial question is the nature of the data that are transmitted from the sensors to the processing and archival servers. To this end, we propose an efficient audio coding scheme based on third octave band spectral representation that allows: (1) the estimation of standard acoustic indicators; and (2) the recognition of acoustic events at state-of-the-art performance rate. The former is useful to provide quantitative information about the acoustic environment, while the latter is useful to gather qualitative information and build perceptually motivated indicators using for example the emergence of a given sound source. The coding scheme is also demonstrated to transmit spectrally encoded data that, reverted to the time domain using state-of-the-art techniques, are not intelligible, thus protecting the privacy of citizens.

11.
J Environ Monit ; 13(10): 2710-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21879096

RESUMEN

Requirements for static (prediction of L(den) and diurnal averaged noise pattern) and dynamic (prediction of 15 min and 60 min evolution of L(Aeq) and statistical levels L(A90,)L(A50) and L(A10)) noise level monitoring are investigated in this paper. Noise levels are measured for 72 consecutive days at 5 neighboring streets in an inner-city noise measurement network in Gent, Flanders, Belgium. We present a method to make predictions based on a fixed monitoring station, combined with short-term sampling at temporary stations. It is shown that relying on a fixed station improves the estimation of L(den) at other locations, and allows for the reduction of the number of samples needed and their duration; L(den) is estimated with an error that does not exceed 1.5 dB(A) to 3.4 dB(A) according to the location, for 90% of the 3 × 15 min samples. Also the diurnal averaged noise pattern can be estimated with a good accuracy in this way. It was shown that there is an optimal location for the fixed station which can be found by short-term measurements only. Short-term level predictions were shown to be more difficult; 7 day samples were needed to build models able to estimate the evolution of L(Aeq,60min) with a RMSE ranging between 1.4 dB(A) and 3.7 dB(A). These higher values can be explained by the very pronounced short-term variations appearing in typical streets, which are not correlated between locations. On the other hand, moderately accurate predictions can be achieved, even based on short-term sampling (a 3 × 15 minute sampling duration seems to be sufficient for many of the accuracy goals set related to static and dynamic monitoring). Finally, the method proposed also allows for the prediction of the evolution of statistical indicators.


Asunto(s)
Ciudades/estadística & datos numéricos , Monitoreo del Ambiente/métodos , Ruido del Transporte/estadística & datos numéricos , Bélgica , Equipos y Suministros Eléctricos , Monitoreo del Ambiente/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...