Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Naturwissenschaften ; 111(3): 25, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647683

RESUMEN

Tocoyena formosa has a persistent floral nectary that continues producing nectar throughout flower and fruit development. This plant also presents an intriguing non-anthetic nectary derived from early-developing floral buds with premature abscised corolla. In this study, we characterize the structure, morphological changes, and functioning of T. formosa floral nectary at different developmental stages. We subdivided the nectary into four categories based on the floral and fruit development stage at which nectar production started: (i) non-anthetic nectary; (ii) anthetic nectary, which follows the regular floral development; (iii) pericarpial nectary, derived from pollinated flowers following fruit development; and (iv) post-anthetic nectary that results from non-pollinated flowers after anthesis. The nectary has a uniseriate epidermis with stomata, nectariferous parenchyma, and vascular bundles, with a predominating phloem at the periphery. The non-anthetic nectary presents immature tissues that release the exudate. The nectary progressively becomes more rigid as the flower and fruit develop. The main nectary changes during flower and fruit development comprised the thickening of the cuticle and epidermal cell walls, formation of cuticular epithelium, and an increase in the abundance of calcium oxalate crystals and phenolic cells near the vascular bundles. Projections of the outer periclinal walls toward the cuticle in the post-anthetic nectary suggest nectar reabsorption. The anatomical changes of the nectary allow it to function for an extended period throughout floral and fruit development. Hence, T. formosa nectary is a bivalent secretory structure that plays a crucial role in the reproductive and defensive interactions of this plant species.


Asunto(s)
Flores , Néctar de las Plantas , Rubiaceae , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Rubiaceae/anatomía & histología , Rubiaceae/crecimiento & desarrollo , Rubiaceae/fisiología , Frutas/crecimiento & desarrollo , Frutas/anatomía & histología
2.
Protoplasma ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38480560

RESUMEN

This study compares oil and mucilage idioblasts occurring together in the vegetative organs of Ocotea pulchella, a Lauraceae species. Our focus is specifically on the ontogeny and developmental cytology of these secretory cells. Both types of idioblasts originate from solitary cells located in the fundamental meristem, underlying the protodermis. The growth of both types of idioblasts is asynchronous, with the oil idioblasts developing first, but their initiation is restricted to the early stages of organ development. Mucilaginous idioblasts occur exclusively in the palisade parenchyma, while oil idioblasts are scattered throughout the mesophyll, midrib, and petiole of the leaves. The lamellar secretion of mucilage idioblasts is mostly made up of polysaccharides, while the secretion of oil idioblasts is made up of terpenes and lipids. Cupule occurred only in the oil idioblasts, while suberized layers occurred in both types of cells. We found that immature oil idioblasts that are close to each other fuse; mature mucilage idioblasts have labyrinthine walls arranged in a reticulate pattern; the cells close to the oil idioblasts have a pectin protective layer; and the oil idioblasts have a sheath of phenolic cells. In contrast to previous reports, the two types of secretory idioblasts were recognized during the early stages of their development. The results emphasize the importance of combining optical and electron microscopy methods to observe the ontogenetic, histochemical and ultrastructural changes that occur during the development of the secretory idioblasts. This can help us understand how secreting cells store their secretions and how their walls become specialized.

3.
Naturwissenschaften ; 110(5): 44, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682350

RESUMEN

This study characterizes the osmophores and corolla traits in 18 species of Bignonieae Dumort., a Bignoniaceae tribe occurring in the Cerrado, a neotropical savanna in Brazil. To detect osmophore distribution, whole, newly opened flowers were immersed in Neutral Red Solution. Samples from the corolla tube and lobes were also fixed and analyzed micromorphologically, anatomically, and histochemically. The osmophores showed six markedly different distribution patterns that were not clearly associated with histological features. In most species, osmophores comprised papillose secretory epidermises and a few layers of subepidermal parenchyma. Starch grains, lipid droplets, and terpenes were detected in osmophores. An ornamented cuticle, cuticular folds, glandular and non-glandular trichomes, raised stomata and epicuticular wax granules are common traits in the species studied and may be useful in determining the taxonomy of the group. We found that 94% of the species visited by bees had papillose epidermises while the single hummingbird-pollinated species presented a flattened epidermis. Variations in osmophore pattern among species visited by bees, including variations within the same plant genus, are novel finding. Additionally, the Bignonieae species visited by bees presented a textured corolla surface, which has been reported as facilitating bee attachment and movement towards the floral resource. Future studies with a greater number of Bignonieae species and more detailed pollinator behavioral assays may help in the interpretation of the variations in corolla traits and functional relationships between flowers and pollinators.


Asunto(s)
Bignoniaceae , Animales , Abejas , Brasil , Flores , Fenotipo , Terpenos
4.
Naturwissenschaften ; 108(2): 11, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33740167

RESUMEN

Regrowth via production of epicormic shoots is an important strategy for many woody plants after environmental disturbances such as fire, drought, and herbivory. Populations spreading across a broad latitudinal gradient offer opportunities to investigate if essential traits vary with heterogenous environmental conditions, such as in savanna ecosystems. This information can help us predict plant responses to climate change. Here, we evaluated if epicormic bud protection traits varied among populations of three focal savanna species (Miconia albicans, Solanum lycocarpum, and Zeyheria montana) that have a wide distribution and grow under variable climatic conditions. We randomly sampled 225 individuals over five spatially independent sites (7°, 10°, 15°, 18°, and 24° S) in Brazil, totaling 15 individuals per species per area. We analyzed anatomical transverse sections of five buds per species per area to assess the relative area occupied by crystal and phenolic idioblasts, the thickness of the trichome boundary layer, and to test if these traits were associated with climatic conditions. The buds were protected by cataphylls and composed of a variable number of undeveloped leaves enveloping the shoot apex. For M. albicans, we found an association between maximum temperature and both phenolic idioblasts and trichome boundary layer, but no association with crystal idioblasts. In S. lycocarpum, only the trichome boundary layer was associated with maximum temperature plus high radiation. Z. montana showed no variation. Combination of two or more traits can lead to the development of adaptative strategies to different climatic conditions. We present for the first time an analysis of epicormic bud traits in plant populations occurring in an extensive latitudinal gradient and shed light on how maximum temperature is associated with these traits, contributing to a better understanding of plant resprouting capabilities in widespread savanna plant species.


Asunto(s)
Pradera , Magnoliopsida/fisiología , Temperatura , Brasil , Magnoliopsida/anatomía & histología , Melastomataceae/anatomía & histología , Melastomataceae/fisiología , Solanum/anatomía & histología , Solanum/fisiología , Clima Tropical
5.
Protoplasma ; 258(2): 415-429, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33140195

RESUMEN

The neem tree (Azadirachta indica A.Juss.) contains a range of biologically active compounds-mainly triterpenoids produced in single secretory cells, which are distributed among all plant parts. Neem secretions are toxic to animal cells, triggering autolytic mechanisms that culminate in cell disruption. However, little is known about the self-toxicity of these secretions to the cells that produce them. We carried out an anatomical, histochemical, and ultrastructural investigation of neem's single secretory cells in the shoot apex and in young leaves. We evaluated the morphological changes as possible evidences of stress reactions to their own secretions. The subcellular apparatus involved in synthesis and compartmentation was consistent with hydrophilic and lipophilic secretions. Polymorphic plastids devoid of thylakoids and abundant smooth endoplasmic reticulum in the later stages of differentiation are comparable with previous reports on neem cotyledons with regard to terpenoid synthesis. However, secretions were compartmentalized within autophagic vacuoles and periplasmic spaces instead of in terpenoid vesicles. Cellular swelling, increased vesiculation, dilatation of endoplasmic reticulum cisternae, mitochondrial hypertrophy in the cristolysis process, autolytic vacuoles, and vacuolar degeneration culminating in protoplast autolysis are all consistent with early indications of autotoxicity. The signaling stress reaction mechanism was expressed as cytoplasmic deposits of calcium salt and by the expression of a 70-kDa heat-shock protein. The morphological and histochemical changes in the secreting cells are comparable with those described in animal cells exposed to neem oil. Our data provide evidence of cell damage and signaling reactions linked to these cells' own secretions before autolysis.


Asunto(s)
Glicéridos/química , Hojas de la Planta/química , Terpenos/química
6.
Protoplasma ; 256(1): 131-146, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29998452

RESUMEN

The cellular mechanisms of laticifer growth are of particular interest in plant biology but are commonly neglected. Using transmission electron microscopy and immunocytochemical methods, we recorded cytological differentiation and evaluated the cell wall involvement in the growth of articulated laticifers with intrusive growth in the mature embryo and plant shoot apex of Tabernaemontana catharinensis. The incorporation of adjacent meristematic cells into the laticifer system occurred in the embryo and plant shoot apex, and the incorporated cells acquired features of laticifer, confirming the laticifers' action-inducing mechanism. In the embryo, this was the main growth mechanism, and began with enlargement of the plasmodesmata and the formation of pores between laticifers and meristematic cells. In the plant shoot apex, it began with loose and disassembled walls and the reorientation of the cortical microtubules of the incorporated cell. Plasmodesmata were absent in these laticifers. There was stronger evidence of intrusive growth in undifferentiated portions of the plant shoot apex than in the embryo. The numerous plasmodesmata in laticifers of the embryo may have been related to the lower frequency of intrusive growth. Intrusive growth was associated with presence of arabinan (increasing wall flexibility and fluidity), and absence of galactan (avoiding wall stiffness), and callose (as a consequence of reduction in symplastic connections) in the laticifer walls. The abundance of low de-methyl-esterified homogalacturonan in the middle lamella and corners may reestablish cell-cell bonding in the laticifers. The cell wall features differed between embryo and plant shoot apex and are directly associated to laticifer growth mechanisms.


Asunto(s)
Pared Celular/metabolismo , Proteínas de Plantas/metabolismo , Apocynaceae , Diferenciación Celular , Inmunohistoquímica
7.
Naturwissenschaften ; 104(3-4): 17, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28251302

RESUMEN

This study aims to investigate colleters' secretory function, on cellular level, in Rubiaceae species from contrasting environments looking to explore the association between secretion and environment. We collected samples from eight species of Rubiaceae growing in forest and savanna having standard-type colleters with diverse histochemistry (hydrophilic, lipophilic and mixed secretions) and processed for both conventional and cytochemical study under transmission electron microscopy (TEM). The standard colleters, although similar in morphology and anatomy, exhibited marked differences on cellular level, especially in the abundance and topology of Golgi bodies, endoplasmic reticulum and plastids when comparing forest and savanna species. These differences were clearly aligned with the chemical nature of the secretions they produce, with predominance of hydrophilic secretions in forest species and lipophilic or mixed secretions in savanna species. The combination of methods in electron microscopy revealed the sites of synthesis and intracellular compartmentation of substances, the mechanisms of their secretion from the protoplast and confirmed the involvement of the outer walls of the epithelial cells in the elimination of exudates to the gland surface. Our study suggests a potential environment-associated plasticity of the secretory cells of standard-type colleters in modulating their secretory function performance.


Asunto(s)
Rubiaceae/citología , Rubiaceae/fisiología , Bosques , Pradera , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Transmisión , Brotes de la Planta/química , Brotes de la Planta/citología , Brotes de la Planta/fisiología , Rubiaceae/química , Especificidad de la Especie
8.
Protoplasma ; 254(4): 1661-1674, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27957603

RESUMEN

This study investigates the histology and subcellular features of secretory cavities during the development of the shoot apex of Metrodorea nigra A. St.-Hil. in order to better understand the functioning of these glands. This Rutaceae species is a very suitable model for studying secretory cavity life span, since the shoot apex exhibits both dormant and growth stages during its annual cycle. Shoot apices were collected during the dormant and growth stages from populations of M. nigra growing under natural conditions. Materials were processed using standard techniques for light and electron microscopy. The secretory cavities originate under the protodermis, and their initiation is restricted to the early developmental stage of shoot organs, which are protected by a hood-shaped structure. Secretory cavities have a multi-seriate epithelium surrounding a lumen that expands schizolysigenously. Oil production begins before lumen formation. When the shoot apex resumes development after the dormant stage, the glands remain active in oil secretion in the developing shoot apex and fully expanded leaves. The mature epithelial cells are flattened and exhibit very thin walls, large oil bodies, leucoplasts surrounded by endoplasmic reticulum, and mitochondria with unusual morphology. The tangential walls of the epithelial cells facing the lumen undergo continuous peeling. The vacuole extrusion appears to be the primary mode of release oil into the lumen, in an exocytotic way. The continuity of oil secretion is ensured by the replacement of the damaged inner epithelial cells by divisions in the parenchyma layer that surround the oil gland, likely a meristematic sheath.


Asunto(s)
Aceites de Plantas/metabolismo , Brotes de la Planta/ultraestructura , Rutaceae/ultraestructura , Diferenciación Celular , Aceites Volátiles/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Rutaceae/crecimiento & desarrollo , Rutaceae/metabolismo , Vacuolas/metabolismo , Vacuolas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA