Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38534504

RESUMEN

The penis is a complex organ with a development cycle from the fetal stage to puberty. In addition, it may suffer from either congenital or acquired anomalies. Penile surgical reconstruction has been the center of interest for many researchers but is still challenging due to the complexity of its anatomy and functionality. In this review, penile anatomy, pathologies, and current treatments are described, including surgical techniques and tissue engineering approaches. The self-assembly technique currently applied is emphasized since it is considered promising for an adequate tissue-engineered penile reconstructed substitute.

2.
Sci Rep ; 12(1): 21346, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494468

RESUMEN

Urologic patients may be affected by pathologies requiring surgical reconstruction to re-establish a normal function. The lack of autologous tissues to reconstruct the urethra led clinicians toward new solutions, such as tissue engineering. Tridimensional tissues were produced and characterized from a clinical perspective. The balance was optimized between increasing the mechanical resistance of urethral-engineered tissue and preserving the urothelium's barrier function, essential to avoid urine extravasation and subsequent inflammation and fibrosis. The substitutes produced using a mix of vesical (VF) and dermal fibroblasts (DF) in either 90%:10% or 80%:20% showed mechanical resistance values comparable to human native bladder tissue while maintaining functionality. The presence of mature urothelium markers such as uroplakins and tight junctions were documented. All substitutes showed similar histological features except for the noticeable decrease in polysaccharide globules for the substitutes made with a higher proportion of DF. The degree of maturation evaluated with electron microscopy was positively correlated with the increased concentration of VF in the stroma. Substitutes produced with VF and at least 10% of DF showed sufficient mechanical resistance to withstand surgeon manipulation and high functionality, which may improve long-term patients' quality of life, representing a great future alternative to current treatments.


Asunto(s)
Calidad de Vida , Uretra , Humanos , Ingeniería de Tejidos/métodos , Urotelio , Uroplaquinas
3.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077429

RESUMEN

Over the past decade, growing demand from many domains (research, cosmetics, pharmaceutical industries, etc.) has given rise to significant expansion of the number of in vitro cell cultures. Despite the widespread use of fetal bovine serum, many issues remain. Among them, the whole constitution of most serums remains unknown and is subject to significant variations. Furthermore, the presence of potential contamination and xenogeny elements is challenging for clinical applications, while limited production is an obstacle to the growing demand. To circumvent these issues, a Serum-Free Medium (SFM) has been developed to culture dermal and vesical fibroblasts and their corresponding epithelial cells, namely, keratinocytes and urothelial cells. To assess the impact of SFM on these cells, proliferation, clonogenic and metabolic assays have been compared over three passages to conditions associated with the use of a classic Fetal Bovine Serum-Containing Medium (FBSCM). The results showed that the SFM enabled fibroblast and epithelial cell proliferation while maintaining a morphology, cell size and metabolism similar to those of FBSCM. SFM has repeatedly been found to be better suited for epithelial cell proliferation and clonogenicity. Fibroblasts and epithelial cells also showed more significant mitochondrial metabolism in the SFM compared to the FBSCM condition. However, the SFM may need further optimization to improve fibroblast proliferation.


Asunto(s)
Técnicas de Cultivo de Célula , Albúmina Sérica Bovina , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Medio de Cultivo Libre de Suero , Humanos , Células del Estroma
4.
Oncol Lett ; 24(1): 220, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35720486

RESUMEN

During the process of tumor growth, cancer cells will be subjected to intermittent hypoxia. This results from the delay in the development of the vascular network in relation to the proliferation of cancer cells. The hypoxic nature of a tumor has been demonstrated as a negative factor for patient survival. To evaluate the impact of hypoxia on the survival and migration properties of low and high-grade bladder cancer cell lines, two low-grade (MGHU-3 and SW-780) and two high-grade (SW-1710 and T24) bladder cancer cell lines were cultured in normoxic (20% O2) or hypoxic atmospheric conditions (2% O2). The response of bladder cancer cell lines to hypoxic atmospheric cell culture conditions was examined under several parameters, including epithelial-mesenchymal transition, doubling time and metabolic activities, thrombospondin-1 expression, whole Matrix Metallo-Proteinase activity, migration and resistance to oxidative stress. The low-grade cell line response to hypoxia was heterogeneous even if it tended to adopt a more aggressive profile. Hypoxia enhanced migration and pro-survival properties of MGHU-3 cells, whereas these features were reduced for the SW-780 cell line cultured under low oxygen tension. The responses of tested high-grade cell lines were more homogeneous and tended to adopt a less aggressive profile. Hypoxia drastically changed some of the bladder cancer cell line properties, for example matrix metalloproteinases expression for all cancer cells but also switch in glycolytic metabolism of low grade cancer cells. Overall, studying bladder cancer cells in hypoxic environments are relevant for the translation from in vitro findings to in vivo context.

5.
Bioengineering (Basel) ; 8(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34821750

RESUMEN

Heat inactivation of bovine sera is routinely performed in cell culture laboratories. Nevertheless, it remains debatable whether it is still necessary due to the improvement of the production process of bovine sera. Do the benefits balance the loss of many proteins, such as hormones and growth factors, that are very useful for cell culture? This is even truer in the case of tissue engineering, the processes of which is often very demanding. This balance is examined here, from nine populations of fibroblasts originating from three different organs, by comparing the capacity of adhesion and proliferation of cells, their metabolism, and the capacity to produce the stroma; their histological appearance, thickness, and mechanical properties were also evaluated. Overall, serum inactivation does not appear to provide a significant benefit.

6.
World J Stem Cells ; 13(10): 1480-1512, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34786154

RESUMEN

The genitourinary tract can be affected by several pathologies which require repair or replacement to recover biological functions. Current therapeutic strategies are challenged by a growing shortage of adequate tissues. Therefore, new options must be considered for the treatment of patients, with the use of stem cells (SCs) being attractive. Two different strategies can be derived from stem cell use: Cell therapy and tissue therapy, mainly through tissue engineering. The recent advances using these approaches are described in this review, with a focus on stromal/mesenchymal cells found in adipose tissue. Indeed, the accessibility, high yield at harvest as well as anti-fibrotic, immunomodulatory and proangiogenic properties make adipose-derived stromal/SCs promising alternatives to the therapies currently offered to patients. Finally, an innovative technique allowing tissue reconstruction without exogenous material, the self-assembly approach, will be presented. Despite advances, more studies are needed to translate such approaches from the bench to clinics in urology. For the 21st century, cell and tissue therapies based on SCs are certainly the future of genitourinary regenerative medicine.

7.
Bioengineering (Basel) ; 8(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34356206

RESUMEN

Tissue engineering is an emerging field of research that initially aimed to produce 3D tissues to bypass the lack of adequate tissues for the repair or replacement of deficient organs. The basis of tissue engineering protocols is to create scaffolds, which can have a synthetic or natural origin, seeded or not with cells. At the same time, more and more studies have indicated the low clinic translation rate of research realised using standard cell culture conditions, i.e., cells on plastic surfaces or using animal models that are too different from humans. New models are needed to mimic the 3D organisation of tissue and the cells themselves and the interaction between cells and the extracellular matrix. In this regard, urology and gynaecology fields are of particular interest. The urethra and vagina can be sites suffering from many pathologies without currently adequate treatment options. Due to the specific organisation of the human urethral/bladder and vaginal epithelium, current research models remain poorly representative. In this review, the anatomy, the current pathologies, and the treatments will be described before focusing on producing tissues and research models using tissue engineering. An emphasis is made on the self-assembly approach, which allows tissue production without the need for biomaterials.

8.
Environ Res ; 195: 110485, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33212129

RESUMEN

Bisphenols are endocrine-disrupting chemicals found in a broad range of products that can modulate hormonal signalling pathways and various other biological functions. These compounds can bind steroid receptors, e.g. estrogen and androgen receptors, expressed by numerous cells and tissues, including the prostate and the bladder, with the potential to alter their homeostasis and normal physiological functions. In the past years, exposure to bisphenols was linked to cancer progression and metastasis. As such, recent pieces of evidence suggest that endocrine-disrupting chemicals can lead to the development of prostate cancer. Moreover, bisphenols are found in the urine of the wide majority of the population. They could potentially affect the bladder's normal physiology and cancer development, even if the bladder is not recognized as a hormone-sensitive tissue. This review will focus on prostate and bladder malignancies, two urological cancers that share standard carcinogenic processes. The description of the underlying mechanisms involved in cell toxicity, and the possible roles of bisphenols in the development of prostate and bladder cancer, could help establish the putative roles of bisphenols on public health.


Asunto(s)
Disruptores Endocrinos , Neoplasias Urológicas , Compuestos de Bencidrilo , Disruptores Endocrinos/toxicidad , Estrógenos , Humanos , Masculino , Transducción de Señal
9.
Bioengineering (Basel) ; 7(3)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957528

RESUMEN

Animal testing has long been used in science to study complex biological phenomena that cannot be investigated using two-dimensional cell cultures in plastic dishes. With time, it appeared that more differences could exist between animal models and even more when translated to human patients. Innovative models became essential to develop more accurate knowledge. Tissue engineering provides some of those models, but it mostly relies on the use of prefabricated scaffolds on which cells are seeded. The self-assembly protocol has recently produced organ-specific human-derived three-dimensional models without the need for exogenous material. This strategy will help to achieve the 3R principles.

10.
Sci Rep ; 10(1): 9291, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518266

RESUMEN

Tissue engineering is an emerging and promising concept to replace or cure failing organs, but its clinical translation currently encounters issues due to the inability to quickly produce inexpensive thick tissues, which are necessary for many applications. To circumvent this problem, we postulate that cells secrete the optimal cocktail required to promote angiogenesis when they are placed in physiological conditions where their oxygen supply is reduced. Thus, dermal fibroblasts were cultivated under hypoxia (2% O2) to condition their cell culture medium. The potential of this conditioned medium was tested for human umbilical vein endothelial cell proliferation and for their ability to form capillary-like networks into fibrin gels. The medium conditioned by dermal fibroblasts under hypoxic conditions (DF-Hx) induced a more significant proliferation of endothelial cells compared to medium conditioned by dermal fibroblasts under normoxic conditions (DF-Nx). In essence, doubling time for endothelial cells in DF-Hx was reduced by 10.4% compared to DF-Nx after 1 week of conditioning, and by 20.3% after 2 weeks. The DF-Hx allowed the formation of more extended and more structured capillary-like networks than DF-Nx or commercially available medium, paving the way to further refinements.


Asunto(s)
Anaerobiosis/fisiología , Capilares/crecimiento & desarrollo , Medios de Cultivo Condicionados/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Ingeniería de Tejidos/métodos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibrina , Fibroblastos/metabolismo , Geles , Humanos , Neovascularización Fisiológica/fisiología , Trasplante de Órganos/métodos , Oxígeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...