Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1357193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104844

RESUMEN

Introduction: Rapid and accurate estimation of leaf area index (LAI) is of great significance for the precision agriculture because LAI is an important parameter to evaluate crop canopy structure and growth status. Methods: In this study, 20 vegetation indices were constructed by using cotton canopy spectra. Then, cotton LAI estimation models were constructed based on multiple machine learning (ML) methods extreme learning machine (ELM), random forest (RF), back propagation (BP), multivariable linear regression (MLR), support vector machine (SVM)], and the optimal modeling strategy (RF) was selected. Finally, the vegetation indices with a high correlation with LAI were fused to construct the VI-fusion RF model, to explore the potential of multi-vegetation index fusion in the estimation of cotton LAI. Results: The RF model had the highest estimation accuracy among the LAI estimation models, and the estimation accuracy of models constructed by fusing multiple VIs was higher than that of models constructed based on single VIs. Among the multi-VI fusion models, the RF model constructed based on the fusion of seven vegetation indices (MNDSI, SRI, GRVI, REP, CIred-edge, MSR, and NVI) had the highest estimation accuracy, with coefficient of determination (R2), rootmean square error (RMSE), normalized rootmean square error (NRMSE), and mean absolute error (MAE) of 0.90, 0.50, 0.14, and 0.26, respectively. Discussion: Appropriate fusion of vegetation indices can include more spectral features in modeling and significantly improve the cotton LAI estimation accuracy. This study will provide a technical reference for improving the cotton LAI estimation accuracy, and the proposed method has great potential for crop growth monitoring applications.

2.
Sci Rep ; 14(1): 8067, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580655

RESUMEN

The prediction of hydrological time series is of great significance for developing flood and drought prevention approaches and is an important component in research on smart water resources. The nonlinear characteristics of hydrological time series are important factors affecting the accuracy of predictions. To enhance the prediction of the nonlinear component in hydrological time series, we employed an improved whale optimisation algorithm (IWOA) to optimise an attention-based long short-term memory (ALSTM) network. The proposed model is termed IWOA-ALSTM. Specifically, we introduced an attention mechanism between two LSTM layers, enabling adaptive focus on distinct features within each time unit to gather information pertaining to a hydrological time series. Furthermore, given the critical impact of the model hyperparameter configuration on the prediction accuracy and operational efficiency, the proposed improved whale optimisation algorithm facilitates the discovery of optimal hyperparameters for the ALSTM model. In this work, we used nonlinear water level information obtained from Hankou station as experimental data. The results of this model were compared with those of genetic algorithms, particle swarm optimisation algorithms and whale optimisation algorithms. The experiments were conducted using five evaluation metrics, namely, the RMSE, MAE, NSE, SI and DR. The results show that the IWOA is effective at optimising the ALSTM and significantly improves the prediction accuracy of nonlinear hydrological time series.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...