Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Sci ; 12(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36358353

RESUMEN

Glioblastomas are incurable primary brain tumors harboring a heterogeneous landscape of genetic and metabolic alterations. Longitudinal imaging by MRI and [18F]FET-PET measurements enable us to visualize the features of evolving tumors in a dynamic manner. Yet, close-meshed longitudinal imaging time points for characterizing temporal and spatial metabolic alterations during tumor evolution in patients is not feasible because patients usually present with already established tumors. The replication-competent avian sarcoma-leukosis virus (RCAS)/tumor virus receptor-A (tva) system is a powerful preclinical glioma model offering a high grade of spatial and temporal control of somatic gene delivery in vivo. Consequently, here, we aimed at using MRI and [18F]FET-PET to identify typical neuroimaging characteristics of the platelet-derived growth factor B (PDGFB)-driven glioma model using the RCAS-tva system. Our study showed that this preclinical glioma model displays MRI and [18F]FET-PET features that highly resemble the corresponding established human disease, emphasizing the high translational relevance of this experimental model. Furthermore, our investigations unravel exponential growth dynamics and a model-specific tumor microenvironment, as assessed by histology and immunochemistry. Taken together, our study provides further insights into this preclinical model and advocates for the imaging-stratified design of preclinical therapeutic interventions.

2.
Biomater Adv ; 137: 212824, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35929239

RESUMEN

Artificial lungs, also known as oxygenators, allow adequate oxygenation of the blood in patients with severe respiratory failure and enable patient survival. However, the insufficient hemocompatibility of the current of artificial lungs hampers their long-term use. Therefore, in this study, a novel strategy was developed to efficiently endothelialize blood-contacting surfaces to improve their hemocompatibility. Hollow fiber membranes (HFMs) were functionalized with dibenzylcyclooctyne (DBCO), and endothelial cells were glycoengineered for covalent conjugation to DBCO by a copper-free click reaction. Metabolic glycoengineering using azidoacetylmannosamine-tetraacylated (Ac4ManNAz) resulted in highly efficient functionalization of endothelial cells with azide (N3) molecules on the cell surface without negative impact on cell viability. After 48 h, significantly improved endothelialization was detected on the HFM surfaces functionalized with DBCO compared to unmodified HFMs. Endothelial cells were responsive to inflammatory stimulus and expressed adhesion-promoting molecules (E-selectin, VCAM-1, and ICAM-1). Furthermore, the hemocompatibility of HFMs was analyzed by dynamic incubation with fresh human blood. DBCO-coated and uncoated HFMs showed a comparable hemocompatibility, but the endothelialization of HFMs significantly reduced the activation of blood coagulation and platelets. Interestingly, the incubation of endothelialized HFMs with human blood further reduced the expression of E-selectin and VCAM-1 in endothelial cells. In this study, a highly efficient, cell-compatible method for endothelialization of artificial lungs was established. This click chemistry-based method can be also applied for the endothelialization of other artificial surfaces for tissue engineering and regenerative medicine applications.


Asunto(s)
Selectina E , Molécula 1 de Adhesión Celular Vascular , Alquinos , Compuestos de Bencilo , Química Clic , Selectina E/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pulmón , Molécula 1 de Adhesión Celular Vascular/metabolismo
3.
JACC Basic Transl Sci ; 7(5): 445-461, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35663628

RESUMEN

Genetic predisposition through F11R-single-nucleotide variation (SNV) influences circulatory soluble junctional adhesion molecule-A (sJAM-A) levels in coronary artery disease (CAD) patients. Homozygous carriers of the minor alleles (F11R-SNVs rs2774276, rs790056) show enhanced levels of thrombo-inflammatory sJAM-A. Both F11R-SNVs and sJAM-A are associated with worse prognosis for recurrent myocardial infarction in CAD patients. Platelet surface-associated JAM-A correlate with platelet activation markers in CAD patients. Activated platelets shed transmembrane-JAM-A, generating proinflammatory sJAM-A and JAM-A-bearing microparticles. Platelet transmembrane-JAM-A and sJAM-A as homophilic interaction partners exaggerate thrombotic and thrombo-inflammatory platelet monocyte interactions. Therapeutic strategies interfering with this homophilic interface may regulate thrombotic and thrombo-inflammatory platelet response in cardiovascular pathologies where circulatory sJAM-A levels are elevated.

4.
Pharmaceutics ; 14(6)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35745767

RESUMEN

Endothelial progenitor cells (EPCs) are one of the most important stem cells for the neovascularization of tissues damaged by ischemic diseases such as myocardial infarction, ischemic stroke, or critical limb ischemia. However, their low homing efficiency in the treatment of ischemic tissues limits their potential clinical applications. The use of synthetic messenger RNA (mRNA) for cell engineering represents a novel and promising technology for the modulation of cell behavior and tissue regeneration. To improve the therapeutic potential of EPCs, in this study, murine EPCs were engineered with synthetic mRNAs encoding C-X-C chemokine receptor 4 (CXCR4) and P-selectin glycoprotein ligand 1 (PSGL-1) to increase the homing and migration efficiency of EPCs to inflamed endothelium. Flow cytometric measurements revealed that the transfection of EPCs with CXCR4 and PSGL-1 mRNA resulted in increased expressions of CXCR4 and PSGL-1 on the cell surface compared with the unmodified EPCs. The transfection of EPCs with mRNAs did not affect cell viability. CXCR4-mRNA-modified EPCs showed significantly higher migration potential than unmodified cells in a chemotactic migration assay. The binding strength of the EPCs to inflamed endothelium was determined with single-cell atomic force microscopy (AFM). This showed that the mRNA-modified EPCs required a three-fold higher detachment force to be released from the TNF-α-activated endothelium than unmodified EPCs. Furthermore, in a dynamic flow model, significantly increased binding of the mRNA-modified EPCs to inflamed endothelium was detected. This study showed that the engineering of EPCs with homing factors encoding synthetic mRNAs increases the homing and migration potentials of these stem cells to inflamed endothelium. Thus, this strategy represents a promising strategy to increase the therapeutic potential of EPCs for the treatment of ischemic tissues.

5.
Cancers (Basel) ; 13(10)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063518

RESUMEN

Glioblastoma is an aggressive primary tumor of the central nervous system. Targeting the immunosuppressive glioblastoma-associated microenvironment is an interesting therapeutic approach. Tumor-associated macrophages represent an abundant population of tumor-infiltrating host cells with tumor-promoting features. The colony stimulating factor-1/ colony stimulating factor-1 receptor (CSF-1/CSF1R) axis plays an important role for macrophage differentiation and survival. We thus aimed at investigating the antiglioma activity of CSF1R inhibition alone or in combination with blockade of programmed death (PD) 1. We investigated combination treatments of anti-CSF1R alone or in combination with anti-PD1 antibodies in an orthotopic syngeneic glioma mouse model, evaluated post-treatment effects and assessed treatment-induced cytotoxicity in a coculture model of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) ex vivo. Anti-CSF1R monotherapy increased the latency until the onset of neurological symptoms. Combinations of anti-CSF1R and anti-PD1 antibodies led to longterm survivors in vivo. Furthermore, we observed treatment-induced cytotoxicity of combined anti-CSF1R and anti-PD1 treatment in the PDM/TILs cocultures ex vivo. Our results identify CSF1R as a promising therapeutic target for glioblastoma, potentially in combination with PD1 inhibition.

6.
Neurooncol Adv ; 2(1): vdaa115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134924

RESUMEN

BACKGROUND: The overexpression of (basic)helix-loop-helix ((b)HLH) transcription factors (TFs) is frequent in malignant glioma. We investigated molecular effects upon disruption of the (b)HLH network by a dominant-negative variant of the E47 protein (dnE47). Our goal was to identify novel molecular subgroup-specific therapeutic strategies. METHODS: Glioma cell lines LN229, LNZ308, and GS-2/GS-9 were lentivirally transduced. Functional characterization included immunocytochemistry, immunoblots, cytotoxic, and clonogenic survival assays in vitro, and latency until neurological symptoms in vivo. Results of cap analysis gene expression and RNA-sequencing were further validated by immunoblot, flow cytometry, and functional assays in vitro. RESULTS: The induction of dnE47-RFP led to cytoplasmic sequestration of (b)HLH TFs and antiglioma activity in vitro and in vivo. Downstream molecular events, ie, alterations in transcription start site usage and in the transcriptome revealed enrichment of cancer-relevant pathways, particularly of the DNA damage response (DDR) pathway. Pharmacologic validation of this result using ataxia telangiectasia and Rad3 related (ATR) inhibition led to a significantly enhanced early and late apoptotic effect compared with temozolomide alone. CONCLUSIONS: Gliomas overexpressing (b)HLH TFs are sensitive toward inhibition of the ATR kinase. The combination of ATR inhibition plus temozolomide or radiation therapy in this molecular subgroup are warranted.

7.
Cell Mol Life Sci ; 77(11): 2199-2216, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31451894

RESUMEN

The enzyme poly-ADP-ribose-polymerase (PARP) has important roles for many forms of DNA repair and it also participates in transcription, chromatin remodeling and cell death signaling. Currently, some PARP inhibitors are approved for cancer therapy, by means of canceling DNA repair processes and cell division. Drug repurposing is a new and attractive aspect of therapy development that could offer low-cost and accelerated establishment of new treatment options. Excessive PARP activity is also involved in neurodegenerative diseases including the currently untreatable and blinding retinitis pigmentosa group of inherited retinal photoreceptor degenerations. Hence, repurposing of known PARP inhibitors for patients with non-oncological diseases might provide a facilitated route for a novel retinitis pigmentosa therapy. Here, we demonstrate and compare the efficacy of two different PARP inhibitors, BMN-673 and 3-aminobenzamide, by using a well-established retinitis pigmentosa model, the rd1 mouse. Moreover, the mechanistic aspects of the PARP inhibitor-induced protection were also investigated in the present study. Our results showed that rd1 rod photoreceptor cell death was decreased by about 25-40% together with the application of these two PARP inhibitors. The wealth of human clinical data available for BMN-673 highlights a strong potential for a rapid clinical translation into novel retinitis pigmentosa treatments. Remarkably, we have found that the efficacy of 3 aminobenzamide was able to decrease PARylation at the nanomolar level. Our data also provide a link between PARP activity with the Wnt/ß-catenin pathway and the major intracellular antioxidant concentrations behind the PARP-dependent retinal degeneration. In addition, molecular modeling studies were integrated with experimental studies for better understanding of the role of PARP1 inhibitors in retinal degeneration.


Asunto(s)
Benzamidas/uso terapéutico , Ftalazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Degeneración Retiniana/tratamiento farmacológico , Retinitis Pigmentosa/tratamiento farmacológico , Animales , Reposicionamiento de Medicamentos/métodos , Humanos , Ratones , Poli(ADP-Ribosa) Polimerasas/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología
8.
Mol Ther Oncolytics ; 12: 147-161, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30775418

RESUMEN

Glioblastoma is an aggressive primary brain tumor with bad prognosis. On the other hand, oncolytic measles virus (MeV) therapy is an experimental glioma treatment strategy with clinical safety and first evidence of anti-tumoral efficacy. Therefore, we investigated the combination of MeV with conventional therapies by cytotoxic survival assays in long-term glioma cell lines LN229, LNZ308, and glioma stem-like GS8 cells, as well as the basal viral infectivity in primary glioblastoma cultures T81/16, T1094/17, and T708/16. We employed Chou-Talalay analysis to identify the synergistic treatment sequence chemotherapy, virotherapy, and finally radiotherapy (CT-VT-RT). RNA sequencing and immunopeptidome analyses were used to delineate treatment-induced molecular and immunological profiles. CT-VT-RT displayed synergistic anti-glioma activity and initiated a type 1 interferon response, along with canonical Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling, and downstream interferon-stimulated genes were induced, resulting in apoptotic cascades. Furthermore, antigen presentation along with immunostimulatory chemokines was increased in CT-VT-RT-treated glioma cells, indicating a treatment-induced pro-inflammatory phenotype. We identified novel treatment-induced viral and tumor-associated peptides through HLA ligandome analysis. Our data delineate an actionable treatment-induced molecular and immunological signature of CT-VT-RT, and they could be exploited for the design of novel tailored treatment strategies involving virotherapy and immunotherapy.

9.
Anal Bioanal Chem ; 406(14): 3395-406, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24705960

RESUMEN

Implant-related infections are a major challenge in clinical routine because of severe complications, for example infective endocarditis (IE). The purpose of this study was to investigate the real-time interaction of S. gordonii with proteins and cells important in the development of IE, in a flow system, by use of a quartz-crystal microbalance (QCM). Acoustic sensors were biologically modified by preconditioning with sterile saliva, platelet-poor plasma (PPP), or platelet-rich plasma (PRP), followed then by perfusion of a bacterial suspension. After perfusion, additional fluorescence and scanning electron microscopic (SEM) studies were performed. The surface structure of S. gordonii was analyzed by atomic force microscopy (AFM). Compared with S. gordonii adhesion on the abiotic sensor surface following normal mass loading indicated by a frequency decrease, adhesion on saliva, PPP, or PRP-conditioned sensors resulted in an increase in frequency. Furthermore, adhesion induced slightly increased damping signals for saliva and PPP-coated sensors but a decrease upon bacterial adhesion to PRP, indicating the formation of a more rigid biofilm. Microscopic analysis confirmed the formation of dense and vital bacterial layers and the aggregation of platelets and bacteria. In conclusion, our study shows that the complex patterns of QCM output data observed are strongly dependent on the biological substrate and adhesion mechanisms of S. gordonii. Overall, QCM sheds new light on the pathways of such severe infections as IE.


Asunto(s)
Técnicas Biosensibles , Plaquetas/metabolismo , Endocarditis/diagnóstico , Endocarditis/microbiología , Acústica , Adhesión Bacteriana , Biopelículas , Elasticidad , Oro/química , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Adhesividad Plaquetaria , Plasma Rico en Plaquetas/metabolismo , Tecnicas de Microbalanza del Cristal de Cuarzo , Saliva/metabolismo , Saliva/microbiología , Streptococcus gordonii , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...