Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Microbiol Methods ; 189: 106302, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34391819

RESUMEN

Probiotic strains from the Bifidobacterium or Lactobacillus genera improve health outcomes in models of metabolic and cardiovascular disease. Yet, underlying mechanisms governing these improved health outcomes are rooted in the interaction of gut microbiota, intestinal interface, and probiotic strain. Central to defining the underlying mechanisms governing these improved health outcomes is the development of adaptable and non-invasive tools to study probiotic localization and colonization within the host gut microbiome. The objective of this study was to test labeling and tracking efficacy of Bifidobacterium animalis subspecies lactis 420 (B420) using a common clinical imaging agent, indocyanine green (ICG). ICG was an effective in situ labeling agent visualized in either intact mouse or excised gastrointestinal (GI) tract at different time intervals. Quantitative PCR was used to validate ICG visualization of B420, which also demonstrated that B420 transit time matched normal murine GI motility (~8 hours). Contrary to previous thoughts, B420 did not colonize any region of the GI tract whether following a single bolus or daily administration for up to 10 days. We conclude that ICG may provide a useful tool to visualize and track probiotic species such as B420 without implementing complex molecular and genetic tools. Proof-of-concept studies indicate that B420 did not colonize and establish residency align the murine GI tract.


Asunto(s)
Bifidobacterium animalis/genética , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Verde de Indocianina/metabolismo , Imagen Óptica/métodos , Animales , Traslocación Bacteriana , Bifidobacterium animalis/clasificación , Bifidobacterium animalis/aislamiento & purificación , Bifidobacterium animalis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Probióticos , Coloración y Etiquetado
2.
Am J Physiol Heart Circ Physiol ; 318(6): H1461-H1473, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32383991

RESUMEN

There is a sharp rise in cardiovascular disease (CVD) risk and progression with the onset of menopause. The 4-vinylcyclohexene diepoxide (VCD) model of menopause recapitulates the natural, physiological transition through perimenopause to menopause. We hypothesized that menopausal female mice were more susceptible to CVD than pre- or perimenopausal females. Female mice were treated with VCD or vehicle for 20 consecutive days. Premenopausal, perimenopausal, and menopausal mice were administered angiotensin II (ANG II) or subjected to ischemia-reperfusion (I/R). Menopausal females were more susceptible to pathological ANG II-induced cardiac remodeling and cardiac injury from a myocardial infarction (MI), while perimenopausal, like premenopausal, females remained protected. Specifically, ANG II significantly elevated diastolic (130.9 ± 6.0 vs. 114.7 ± 6.2 mmHg) and systolic (156.9 ± 4.8 vs. 141.7 ± 5.0 mmHg) blood pressure and normalized cardiac mass (15.9 ± 1.0 vs. 7.7 ± 1.5%) to a greater extent in menopausal females compared with controls, whereas perimenopausal females demonstrated a similar elevation of diastolic (93.7 ± 2.9 vs. 100.5 ± 4.1 mmHg) and systolic (155.9 ± 7.3 vs. 152.3 ± 6.5 mmHg) blood pressure and normalized cardiac mass (8.3 ± 2.1 vs. 7.5 ± 1.4%) compared with controls. Similarly, menopausal females demonstrated a threefold increase in fibrosis measured by Picrosirus red staining. Finally, hearts of menopausal females (41 ± 5%) showed larger infarct sizes following I/R injury than perimenopausal (18.0 ± 5.6%) and premenopausal (16.2 ± 3.3, 20.1 ± 4.8%) groups. Using the VCD model of menopause, we provide evidence that menopausal females were more susceptible to pathological cardiac remodeling. We suggest that the VCD model of menopause may be critical to better elucidate cellular and molecular mechanisms underlying the transition to CVD susceptibility in menopausal women.NEW & NOTEWORTHY Before menopause, women are protected against cardiovascular disease (CVD) compared with age-matched men; this protection is gradually lost after menopause. We present the first evidence that demonstrates menopausal females are more susceptible to pathological cardiac remodeling while perimenopausal and cycling females are not. The VCD model permits appropriate examination of how increased susceptibility to the pathological process of cardiac remodeling accelerates from pre- to perimenopause to menopause.


Asunto(s)
Remodelación Atrial/fisiología , Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/fisiopatología , Ciclohexenos , Menopausia/fisiología , Compuestos de Vinilo , Angiotensina II , Animales , Enfermedades Cardiovasculares/inducido químicamente , Femenino , Ratones , Modelos Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...