Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
HGG Adv ; : 100372, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39420558

RESUMEN

Cerebellar atrophy and hypoplasia are usually identified on MRI performed on children presenting signs of cerebellar ataxias, developmental delay and intellectual disability. These signs can be associated with hypo- or de-myelinating leukodystrophies. A recent study reported two cases: one child diagnosed with leukodystrophy and cerebellar atrophy, harboring a homozygous variant in LSM7 and another one who died in utero, presumed to have another homozygous variant in LSM7, based on parents' genotype. LSM7 encodes a subunit of the LSM complex, involved in pre-RNA maturation and mRNA degradation. Consequently, it has been suggested as a strong candidate disease gene. This hypothesis was supported by functional investigations of the variants. Presently, we report a patient with neurodevelopmental defects, leukodystrophy and cerebellar atrophy, harboring compound heterozygous missense variants in the LSM7 gene. One of these variants is the same as the one carried by the first case previously reported. The other one is at the same position as the variant potentially carried by the second case previously reported. Based on comparable neuroimaging, clinical features and the involvement of the same amino-acids previously demonstrated as key for LSM complex function, we confirm that LSM7 disruption causes a neurodevelopmental disorder characterized by leukodystrophy and cerebellar atrophy.

3.
Cell ; 187(14): 3585-3601.e22, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38821050

RESUMEN

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.


Asunto(s)
Dolicoles , Dolicoles/metabolismo , Dolicoles/biosíntesis , Humanos , Glicosilación , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/genética , Masculino , Mutación Missense , Femenino
4.
Am J Hum Genet ; 111(3): 529-543, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38387458

RESUMEN

The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Lípidos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Proteínas de Unión al GTP rab/metabolismo
5.
Eur J Med Genet ; 66(10): 104848, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37739061

RESUMEN

The association of both uniparental disomy and small supernumerary marker chromosomes is rare. Clinical impact depends on the presence of imprinted genes and/or the unmasking of a recessive mutation of the chromosome involved in the uniparental disomy and the euchromatic content of the sSMC. Here, we report on the second case of a patient harbouring a de novo supernumerary marker chromosome 6 causing partial trisomy 6p12.3p11.1 associated with a paternal uniparental isodisomy of chromosome 6. Our patient presented with intrauterine growth retardation, macroglossia, initial developmental delay and transient neonatal diabetes mellitus followed by a congenital hyperinsulinism. Diabetes and intrauterine growth retardation can be linked to the paternal isodisomy of the imprinted locus on chromosome 6q24 whereas developmental delay is probably due to the small supernumerary marker chromosome. However, the clinical impact of partial trisomy 6p is difficult to address due to a limited number of patients. The careful clinical examination and the molecular characterization of additional patients with trisomy 6p are needed to further predict the phenotype for genetic counselling. Finally, uniparental disomy should be considered when a sSMC involving a chromosome containing imprinted regions is detected, especially in the prenatal setting.

6.
BMC Med Genomics ; 16(1): 143, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344844

RESUMEN

Bi-allelic variants in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been involved in early-onset encephalopathies classified as pontocerebellar hypoplasia (PCH) type 6 and in epileptic encephalopathy. A variant (NM_020320.3:c.-2A > G) in the promoter and 5'UTR of the RARS2 gene has been previously identified in a family with PCH. Only a mild impact of this variant on the mRNA level has been detected. As RARS2 is non-dosage-sensitive, this observation is not conclusive in regard of the pathogenicity of the variant.We report and describe here a new patient with the same variant in the RARS2 gene, at the homozygous state. This patient presents with a clinical phenotype consistent with PCH6 although in the absence of lactic acidosis. In agreement with the previous study, we measured RARS2 mRNA levels in patient's fibroblasts and detected a partially preserved gene expression compared to control. Importantly, this variant is located in the Kozak sequence that controls translation initiation. Therefore, we investigated the impact on protein translation using a bioinformatic approach and western blotting. We show here that this variant, additionally to its effect on the transcription, also disrupts the consensus Kozak sequence, and has a major impact on RARS2 protein translation. Through the identification of this additional case and the characterization of the molecular consequences, we clarified the involvement of this Kozak variant in PCH and on protein synthesis. This work also points to the current limitation in the pathogenicity prediction of variants located in the translation initiation region.


Asunto(s)
Arginino-ARNt Ligasa , Enfermedades Cerebelosas , Atrofias Olivopontocerebelosas , Humanos , Atrofias Olivopontocerebelosas/genética , ARN Mensajero/genética
7.
Ann Clin Transl Neurol ; 9(7): 1080-1089, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35684946

RESUMEN

The endoplasmic reticulum membrane protein complex subunit 10 (EMC10) is a highly conserved protein responsible for the post-translational insertion of tail-anchored membrane proteins into the endoplasmic reticulum in a defined topology. Two biallelic variants in EMC10 have previously been associated with a neurodevelopmental disorder. Utilizing exome sequencing and international data sharing we have identified 10 affected individuals from six independent families with five new biallelic loss-of-function and one previously reported recurrent EMC10 variants. This report expands the molecular and clinical spectrum of EMC10 deficiency, provides a comprehensive dysmorphological assessment and highlights an overlap between the clinical features of EMC10-and EMC1-related disease.


Asunto(s)
Discapacidad Intelectual , Proteínas de la Membrana , Trastornos del Neurodesarrollo , Humanos , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Secuenciación del Exoma
8.
Hum Mol Genet ; 31(18): 3083-3094, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-35512351

RESUMEN

BACKGROUND: TASP1 encodes an endopeptidase activating histone methyltransferases of the KMT2 family. Homozygous loss-of-function variants in TASP1 have recently been associated with Suleiman-El-Hattab syndrome. We report six individuals with Suleiman-El-Hattab syndrome and provide functional characterization of this novel histone modification disorder in a multi-omics approach. METHODS: Chromosomal microarray/exome sequencing in all individuals. Western blotting from fibroblasts in two individuals. RNA sequencing and proteomics from fibroblasts in one individual. Methylome analysis from blood in two individuals. Knock-out of tasp1 orthologue in zebrafish and phenotyping. RESULTS: All individuals had biallelic TASP1 loss-of-function variants and a phenotype including developmental delay, multiple congenital anomalies (including cardiovascular and posterior fossa malformations), a distinct facial appearance and happy demeanor. Western blot revealed absence of TASP1. RNA sequencing/proteomics showed HOX gene downregulation (HOXA4, HOXA7, HOXA1 and HOXB2) and dysregulation of transcription factor TFIIA. A distinct methylation profile intermediate between control and Kabuki syndrome (KMT2D) profiles could be produced. Zebrafish tasp1 knock-out revealed smaller head size and abnormal cranial cartilage formation in tasp1 crispants. CONCLUSION: This work further delineates Suleiman-El-Hattab syndrome, a recognizable neurodevelopmental syndrome. Possible downstream mechanisms of TASP1 deficiency include perturbed HOX gene expression and dysregulated TFIIA complex. Methylation pattern suggests that Suleiman-El-Hattab syndrome can be categorized into the group of histone modification disorders including Wiedemann-Steiner and Kabuki syndrome.


Asunto(s)
Código de Histonas , Pez Cebra , Anomalías Múltiples , Animales , Endopeptidasas/genética , Cara/anomalías , Enfermedades Hematológicas , Histona Metiltransferasas/genética , Fenotipo , Factor de Transcripción TFIIA/genética , Enfermedades Vestibulares , Pez Cebra/genética
9.
Eur J Hum Genet ; 30(6): 712-720, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388186

RESUMEN

Highly identical segmental duplications (SDs) account for over 5% of the human genome and are enriched in the short arm of the chromosome 16. These SDs are susceptibility factors for recurrent chromosomal rearrangements mediated by non-allelic homologous recombination (NAHR). Chromosomal microarray analysis (CMA) has been widely used as the first-tier test for individuals with developmental disabilities and/or congenital anomalies and several genomic disorders involving the 16p-arm have been identified with this technique. However, the resolution of CMA and the limitations of short-reads whole genome sequencing (WGS) technology do not allow the full characterization of the most complex chromosomal rearrangements. Herein, we report on two unrelated patients with a de novo 16p13.11p11.2 triplication associated with a 16p11.2 duplication, detected by CMA. These patients share a similar phenotype including hypotonia, severe neurodevelopmental delay with profound speech impairment, hyperkinetic behavior, conductive hearing loss, and distinctive facial features. Short-reads WGS could not map precisely any of the rearrangement's breakpoints that lie within SDs. We used optical genome mapping (OGM) to determine the relative orientation of the triplicated and duplicated segments as well as the genomic positions of the breakpoints, allowing us to propose a mechanism involving recombination between allelic SDs and a NAHR event. In conclusion, we report a new clinically recognizable genomic disorder. In addition, the mechanism of these complex chromosomal rearrangements involving SDs could be unraveled by OGM.


Asunto(s)
Aberraciones Cromosómicas , Duplicaciones Segmentarias en el Genoma , Mapeo Cromosómico/métodos , Genómica , Humanos , Síndrome , Secuenciación Completa del Genoma
10.
Am J Hum Genet ; 109(5): 909-927, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35390279

RESUMEN

Pontocerebellar hypoplasias (PCHs) are congenital disorders characterized by hypoplasia or early atrophy of the cerebellum and brainstem, leading to a very limited motor and cognitive development. Although over 20 genes have been shown to be mutated in PCHs, a large proportion of affected individuals remains undiagnosed. We describe four families with children presenting with severe neonatal brainstem dysfunction and pronounced deficits in cognitive and motor development associated with four different bi-allelic mutations in PRDM13, including homozygous truncating variants in the most severely affected individuals. Brain MRI and fetopathological examination revealed a PCH-like phenotype, associated with major hypoplasia of inferior olive nuclei and dysplasia of the dentate nucleus. Notably, histopathological examinations highlighted a sparse and disorganized Purkinje cell layer in the cerebellum. PRDM13 encodes a transcriptional repressor known to be critical for neuronal subtypes specification in the mouse retina and spinal cord but had not been implicated, so far, in hindbrain development. snRNA-seq data mining and in situ hybridization in humans show that PRDM13 is expressed at early stages in the progenitors of the cerebellar ventricular zone, which gives rise to cerebellar GABAergic neurons, including Purkinje cells. We also show that loss of function of prdm13 in zebrafish leads to a reduction in Purkinje cells numbers and a complete absence of the inferior olive nuclei. Altogether our data identified bi-allelic mutations in PRDM13 as causing a olivopontocerebellar hypoplasia syndrome and suggest that early deregulations of the transcriptional control of neuronal fate specification could contribute to a significant number of cases.


Asunto(s)
Encefalopatías , Pez Cebra , Animales , Encefalopatías/patología , Tronco Encefálico , Cerebelo/anomalías , Cerebelo/patología , Discapacidades del Desarrollo , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Ratones , Mutación/genética , Malformaciones del Sistema Nervioso , Neurogénesis/genética , Células de Purkinje/metabolismo , Factores de Transcripción/genética , Pez Cebra/metabolismo
11.
Prenat Diagn ; 42(1): 118-135, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34894355

RESUMEN

OBJECTIVE: Terminal 6q deletion is a rare genetic condition associated with a neurodevelopmental disorder characterized by intellectual disability and structural brain anomalies. Interestingly, a similar phenotype is observed in patients harboring pathogenic variants in the DLL1 gene. Our study aimed to further characterize the prenatal phenotype of this syndrome as well as to attempt to establish phenotype-genotype correlations. METHOD: We collected ultrasound findings from 22 fetuses diagnosed with a pure 6qter deletion. We reviewed the literature and compared our 22 cases with 14 fetuses previously reported as well as with patients with heterozygous DLL1 pathogenic variants. RESULTS: Brain structural alterations were observed in all fetuses. The most common findings (>70%) were cerebellar hypoplasia, ventriculomegaly, and corpus callosum abnormalities. Gyration abnormalities were observed in 46% of cases. Occasional findings included cerebral heterotopia, aqueductal stenosis, vertebral malformations, dysmorphic features, and kidney abnormalities. CONCLUSION: This is the first series of fetuses diagnosed with pure terminal 6q deletion. Based on our findings, we emphasize the prenatal sonographic anomalies, which may suggest the syndrome. Furthermore, this study highlights the importance of chromosomal microarray analysis to search for submicroscopic deletions of the 6q27 region involving the DLL1 gene in fetuses with these malformations.


Asunto(s)
Proteínas de Unión al Calcio/análisis , Trastornos de los Cromosomas/complicaciones , Proteínas de la Membrana/análisis , Adulto , Proteínas de Unión al Calcio/genética , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 6/genética , Femenino , Humanos , Proteínas de la Membrana/genética , Fenotipo , Embarazo , Estudios Retrospectivos , Trisomía/genética , Virulencia/genética , Virulencia/fisiología
13.
Nat Commun ; 12(1): 2558, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963192

RESUMEN

GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Células Madre Pluripotentes Inducidas/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Neuronas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/genética , Alelos , Secuencia de Aminoácidos , Animales , Preescolar , Discapacidades del Desarrollo/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Femenino , Técnicas de Silenciamiento del Gen , Ontología de Genes , Células HEK293 , Humanos , Mutación con Pérdida de Función , Masculino , Hipotonía Muscular/genética , Disinergia Cerebelosa Mioclónica/genética , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/fisiopatología , Linaje , Polimorfismo de Nucleótido Simple , RNA-Seq , Ribonucleoproteínas Nucleares Pequeñas/genética , Rigor Mortis/genética , Proteínas del Complejo SMN/metabolismo
14.
Blood ; 137(26): 3660-3669, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33763700

RESUMEN

Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 proteins to the cell surface. Pathogenic variants in several genes that participate in GPI biosynthesis cause inherited GPI deficiency disorders. Here, we reported that homozygous null alleles of PIGG, a gene involved in GPI modification, are responsible for the rare Emm-negative blood phenotype. Using a panel of K562 cells defective in both the GPI-transamidase and GPI remodeling pathways, we show that the Emm antigen, whose molecular basis has remained unknown for decades, is carried only by free GPI and that its epitope is composed of the second and third ethanolamine of the GPI backbone. Importantly, we show that the decrease in Emm expression in several inherited GPI deficiency patients is indicative of GPI defects. Overall, our findings establish Emm as a novel blood group system, and they have important implications for understanding the biological function of human free GPI.


Asunto(s)
Antígenos de Grupos Sanguíneos , Discapacidades del Desarrollo , Glicosilfosfatidilinositoles/deficiencia , Glicosilfosfatidilinositoles/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Convulsiones , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/genética , Glicosilfosfatidilinositoles/genética , Humanos , Células K562 , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Convulsiones/enzimología , Convulsiones/genética
15.
Nat Commun ; 11(1): 6087, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257696

RESUMEN

Inositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol-polyphosphate phosphatase 1 gene (MINPP1). Patients are found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We find that patient-derived and genome edited MINPP1-/- induced stem cells exhibit an inefficient neuronal differentiation combined with an increased cell death. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis.


Asunto(s)
Enfermedades Cerebelosas/metabolismo , Quelantes/metabolismo , Citoplasma/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Ácido Fítico/metabolismo , Animales , Muerte Celular , Diferenciación Celular , Enfermedades Cerebelosas/diagnóstico por imagen , Enfermedades Cerebelosas/patología , Niño , Preescolar , Femenino , Técnicas de Inactivación de Genes , Células HEK293 , Homeostasis , Humanos , Lactante , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Trastornos del Neurodesarrollo/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/farmacología , Fosforilación , Células Madre/efectos de los fármacos , Transcriptoma
16.
Am J Hum Genet ; 106(3): 338-355, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109419

RESUMEN

The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Mutación , Trastornos del Neurodesarrollo/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína de Unión al GTP rac1/metabolismo , Secuencia de Aminoácidos , Estudios de Cohortes , Femenino , Factores de Intercambio de Guanina Nucleótido/química , Células HEK293 , Humanos , Masculino , Fenotipo , Proteínas Serina-Treonina Quinasas/química , Homología de Secuencia de Aminoácido
17.
Brain ; 142(10): 2948-2964, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31501903

RESUMEN

Axon pathfinding and synapse formation are essential processes for nervous system development and function. The assembly of myelinated fibres and nodes of Ranvier is mediated by a number of cell adhesion molecules of the immunoglobulin superfamily including neurofascin, encoded by the NFASC gene, and its alternative isoforms Nfasc186 and Nfasc140 (located in the axonal membrane at the node of Ranvier) and Nfasc155 (a glial component of the paranodal axoglial junction). We identified 10 individuals from six unrelated families, exhibiting a neurodevelopmental disorder characterized with a spectrum of central (intellectual disability, developmental delay, motor impairment, speech difficulties) and peripheral (early onset demyelinating neuropathy) neurological involvement, who were found by exome or genome sequencing to carry one frameshift and four different homozygous non-synonymous variants in NFASC. Expression studies using immunostaining-based techniques identified absent expression of the Nfasc155 isoform as a consequence of the frameshift variant and a significant reduction of expression was also observed in association with two non-synonymous variants affecting the fibronectin type III domain. Cell aggregation studies revealed a severely impaired Nfasc155-CNTN1/CASPR1 complex interaction as a result of the identified variants. Immunofluorescence staining of myelinated fibres from two affected individuals showed a severe loss of myelinated fibres and abnormalities in the paranodal junction morphology. Our results establish that recessive variants affecting the Nfasc155 isoform can affect the formation of paranodal axoglial junctions at the nodes of Ranvier. The genetic disease caused by biallelic NFASC variants includes neurodevelopmental impairment and a spectrum of central and peripheral demyelination as part of its core clinical phenotype. Our findings support possible overlapping molecular mechanisms of paranodal damage at peripheral nerves in both the immune-mediated and the genetic disease, but the observation of prominent central neurological involvement in NFASC biallelic variant carriers highlights the importance of this gene in human brain development and function.


Asunto(s)
Moléculas de Adhesión Celular/genética , Enfermedades Desmielinizantes/genética , Factores de Crecimiento Nervioso/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Adulto , Alelos , Axones/metabolismo , Moléculas de Adhesión Celular/metabolismo , Niño , Preescolar , Enfermedades Desmielinizantes/metabolismo , Femenino , Frecuencia de los Genes/genética , Humanos , Lactante , Masculino , Mutación , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/fisiología , Factores de Crecimiento Nervioso/metabolismo , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo/metabolismo , Neuroglía/metabolismo , Linaje , Nervios Periféricos , Isoformas de Proteínas/metabolismo , Nódulos de Ranvier/genética , Nódulos de Ranvier/metabolismo
18.
Elife ; 72018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30311906

RESUMEN

Proper brain development relies highly on protein N-glycosylation to sustain neuronal migration, axon guidance and synaptic physiology. Impairing the N-glycosylation pathway at early steps produces broad neurological symptoms identified in congenital disorders of glycosylation. However, little is known about the molecular mechanisms underlying these defects. We generated a cerebellum specific knockout mouse for Srd5a3, a gene involved in the initiation of N-glycosylation. In addition to motor coordination defects and abnormal granule cell development, Srd5a3 deletion causes mild N-glycosylation impairment without significantly altering ER homeostasis. Using proteomic approaches, we identified that Srd5a3 loss affects a subset of glycoproteins with high N-glycans multiplicity per protein and decreased protein abundance or N-glycosylation level. As IgSF-CAM adhesion proteins are critical for neuron adhesion and highly N-glycosylated, we observed impaired IgSF-CAM-mediated neurite outgrowth and axon guidance in Srd5a3 mutant cerebellum. Our results link high N-glycan multiplicity to fine-tuned neural cell adhesion during mammalian brain development.


Asunto(s)
Cerebelo/metabolismo , Neuronas/citología , Neuronas/metabolismo , Polisacáridos/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/deficiencia , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Animales , Orientación del Axón , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular , Membrana Celular/metabolismo , Cerebelo/embriología , Gránulos Citoplasmáticos/metabolismo , Eliminación de Gen , Glicosilación , Inmunoglobulinas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Actividad Motora , Mutación/genética , Vías Nerviosas/metabolismo , Proteómica , Células de Purkinje/metabolismo , Reproducibilidad de los Resultados , Respuesta de Proteína Desplegada
19.
Brain ; 141(7): 1998-2013, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29878067

RESUMEN

Cerebellar atrophy is a key neuroradiological finding usually associated with cerebellar ataxia and cognitive development defect in children. Unlike the adult forms, early onset cerebellar atrophies are classically described as mostly autosomal recessive conditions and the exact contribution of de novo mutations to this phenotype has not been assessed. In contrast, recent studies pinpoint the high prevalence of pathogenic de novo mutations in other developmental disorders such as intellectual disability, autism spectrum disorders and epilepsy. Here, we investigated a cohort of 47 patients with early onset cerebellar atrophy and/or hypoplasia using a custom gene panel as well as whole exome sequencing. De novo mutations were identified in 35% of patients while 27% had mutations inherited in an autosomal recessive manner. Understanding if these de novo events act through a loss or a gain of function effect is critical for treatment considerations. To gain a better insight into the disease mechanisms causing these cerebellar defects, we focused on CACNA1G, a gene not yet associated with the early-onset form. This gene encodes the Cav3.1 subunit of T-type calcium channels highly expressed in Purkinje neurons and deep cerebellar nuclei. We identified four patients with de novo CACNA1G mutations. They all display severe motor and cognitive impairment, cerebellar atrophy as well as variable features such as facial dysmorphisms, digital anomalies, microcephaly and epilepsy. Three subjects share a recurrent c.2881G>A/p.Ala961Thr variant while the fourth patient has the c.4591A>G/p.Met1531Val variant. Both mutations drastically impaired channel inactivation properties with significantly slower kinetics (∼5 times) and negatively shifted potential for half-inactivation (>10 mV). In addition, these two mutations increase neuronal firing in a cerebellar nuclear neuron model and promote a larger window current fully inhibited by TTA-P2, a selective T-type channel blocker. This study highlights the prevalence of de novo mutations in early-onset cerebellar atrophy and demonstrates that A961T and M1531V are gain of function mutations. Moreover, it reveals that aberrant activity of Cav3.1 channels can markedly alter brain development and suggests that this condition could be amenable to treatment.


Asunto(s)
Canales de Calcio Tipo T/genética , Ataxia Cerebelosa/genética , Adolescente , Adulto , Atrofia/patología , Encéfalo/patología , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio Tipo T/metabolismo , Ataxia Cerebelosa/fisiopatología , Enfermedades Cerebelosas/complicaciones , Cerebelo/patología , Niño , Preescolar , Estudios de Cohortes , Discapacidades del Desarrollo/genética , Femenino , Mutación con Ganancia de Función/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Mutación , Linaje , Fenotipo , Células de Purkinje/patología
20.
Hum Mutat ; 39(5): 666-675, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29330883

RESUMEN

Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype-phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7.


Asunto(s)
Proteínas Portadoras/genética , Estudios de Asociación Genética , Mutación/genética , Adolescente , Preescolar , Resultado Fatal , Femenino , Humanos , Lactante , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...