Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1863(9): 183605, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33766534

RESUMEN

Light absorption by rhodopsin leads to the release of all-trans retinal (ATRal) in the lipid phase of photoreceptor disc membranes. Retinol dehydrogenase 8 (RDH8) then reduces ATRal into all-trans retinol, which is the first step of the visual cycle. The membrane binding of RDH8 has been postulated to be mediated by one or more palmitoylated cysteines located in its C-terminus. Different peptide variants of the C-terminus of RDH8 were thus used to obtain information on the mechanism of membrane binding of this enzyme. Steady-state and time-resolved fluorescence measurements were performed using short and long C-terminal segments of bovine RDH8, comprising one or two tryptophan residues. The data demonstrate that the amphipathic alpha helical structure of the first portion of the C-terminus of RDH8 strongly contributes to its membrane binding, which is also favored by palmitoylation of at least one of the cysteines located in the last portion of the C-terminus.


Asunto(s)
Oxidorreductasas de Alcohol/química , Membrana Dobles de Lípidos/química , Oxidorreductasas de Alcohol/metabolismo , Animales , Bovinos , Membrana Dobles de Lípidos/metabolismo
2.
Biochim Biophys Acta Biomembr ; 1863(4): 183566, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33453187

RESUMEN

Visual phototransduction takes place in photoreceptor cells. Light absorption by rhodopsin leads to the activation of transducin as a result of the exchange of its GDP for GTP. The GTP-bound ⍺-subunit of transducin then activates phosphodiesterase (PDE), which in turn hydrolyzes cGMP leading to photoreceptor hyperpolarization. Photoreceptors return to the dark state upon inactivation of these proteins. In particular, PDE is inactivated by the protein complex R9AP/RGS9-1/Gß5. R9AP (RGS9-1 anchor protein) is responsible for the membrane anchoring of this protein complex to photoreceptor outer segment disk membranes most likely by the combined involvement of its C-terminal hydrophobic domain as well as other types of interactions. This study thus aimed to gather information on the structure and membrane binding of the C-terminal hydrophobic segment of R9AP as well as of truncated R9AP (without its C-terminal domain, R9AP∆TM). Circular dichroism and infrared spectroscopic measurements revealed that the secondary structure of R9AP∆TM mainly includes ⍺-helical structural elements. Moreover, intrinsic fluorescence measurements of native R9AP∆TM and individual mutants lacking one tryptophan demonstrated that W79 is more buried than W173 but that they are both located in a hydrophobic environment. This method also revealed that membrane binding of R9AP∆TM does not involve regions near its tryptophan residues, while infrared spectroscopy validated its binding to lipid vesicles. Additional fluorescence measurements showed that the C-terminal segment of R9AP is membrane embedded. Maximum insertion pressure and synergy data using Langmuir monolayers suggest that interactions with specific phospholipids could be involved in the membrane binding of R9AP∆TM.


Asunto(s)
Proteínas de la Membrana/química , Membranas Artificiales , Animales , Bovinos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Conformación Proteica en Hélice alfa , Dominios Proteicos
3.
Biotechniques ; 67(5): 246-248, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31475584

RESUMEN

As a member of the S100 protein family, S100A10 has already been purified. However, its purity, or even yield, have often not been reported in the literature. To facilitate future biophysical experiments with S100A10, we aimed to obtain it at a purity of at least 95% in a reasonably large amount. Here, we report optimized conditions for the transformation, overexpression and purification of the protein. We obtained a purity of 97% and performed stability studies by circular dichroism. Our data confirmed that the S100A10 obtained is suitable for experiments to be performed at room temperature up to several days.


Asunto(s)
Biotecnología/métodos , Proteínas S100/aislamiento & purificación , Dicroismo Circular , Estabilidad Proteica , Temperatura
4.
Biochem Biophys Res Commun ; 519(4): 832-837, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31561851

RESUMEN

Lecithin retinol acyltransferase (LRAT) is involved in the visual cycle where it catalyzes the formation of all-trans retinyl ester. The mouse animal model has been widely used to study LRAT. Primary sequence alignment shows 80% identity and 90% similarity between human and mouse LRAT. However, human LRAT has a proline at position 173 (hLRAT (P173)) while an arginine can be found at this position for the mouse protein (mLRAT (R173)). Moreover, residue 173 is important for the human protein since a substitution mutation of this residue to a leucine (P173L-hLRAT) caused night blindness in a patient. The present study was thus undertaken to determine whether mouse and human LRAT have a similar enzymatic activity, structure and substrate binding affinity using a truncated form of LRAT (tLRAT). The enzymatic activity and binding affinity to the substrate, all-trans retinol, of mtLRAT (R173) were found to be 2.7- and 3.9-fold lower, respectively, than that of htLRAT (P173). Moreover, the enzymatic activity of P173L-htLRAT is 6.3-fold lower compared to that of htLRAT (P173). Furthermore, a significant difference was observed between the intrinsic fluorescence emission as well as between the circular dichroism spectra of mtLRAT (R173) and htLRAT (P173). In addition, mtLRAT proteins are less thermostable than htLRAT proteins, which suggests that structural differences exist between the mouse and human proteins. Altogether, these data strongly suggest that the much lower catalytic activity of mtLRAT (R173) compared to that of htLRAT (P173) mostly results from differences between their structure, predominantly revealed by their dissimilar thermal stability, as well as their efficiency to bind all-trans retinol. Therefore, conclusions regarding the behavior of human LRAT based on measurements performed with mouse LRAT must be made with caution. Also, the much lower enzymatic activity of P173L-htLRAT compared to that of htLRAT (P173) might explain the night blindness of a patient carrying this mutation.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Aciltransferasas/genética , Animales , Activación Enzimática , Humanos , Ratones , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
5.
Protein Expr Purif ; 152: 92-106, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30036588

RESUMEN

Purification of recombinant proteins is often achieved using a purification tag which can be located either at the N- or C-terminus of a passenger protein of interest. Many purification tags exist and their advantages and limitations are well documented. However, designing fusion proteins can be a challenging task to get a fully expressed, soluble and highly purified passenger protein. Besides, there is a lack of systematic studies on the use of a single tag versus combined tags and on the effect of the position of the tags in the construct. In the present study, 9 different fusion proteins were expressed in Escherichia coli using some of the most commonly used purification tags: maltose-binding protein (MBP), glutathione S-transferase (GST) and polyHis tag. The expression and purification of N-terminus single-tagged fusion proteins (MBP, GST and polyHis) and fusion proteins with combined tags at different positions have been tested. Both the identity of the tag(s) and its position were found to have a strong effect on the expression, solubility and purification yields of the fusion proteins. Consequently, the different fusion proteins assayed have shown varying expression, solubility and purification yields, which were also dependent on the passenger protein. Therefore, there is a compelling need to design various fusion proteins with different single or combined tags to identify optimized constructions allowing to achieve high levels of expression, solubility and purification of the passenger protein.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/aislamiento & purificación , Glutatión Transferasa/aislamiento & purificación , Histidina/aislamiento & purificación , Proteínas de Unión a Maltosa/aislamiento & purificación , Proteínas de la Membrana/aislamiento & purificación , Oligopéptidos/aislamiento & purificación , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Bases , Biotecnología/métodos , Cromatografía de Afinidad/métodos , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Oligopéptidos/genética , Oligopéptidos/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Solubilidad
6.
Eur Biophys J ; 47(6): 679-691, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29691610

RESUMEN

Recoverin is a protein involved in the phototransduction cascade by regulating the activity of rhodopsin kinase through a calcium-dependent binding process at the surface of rod outer segment disk membranes. We have investigated the interaction of recoverin with zwitterionic phosphatidylcholine bilayers, the major lipid component of the rod outer segment disk membranes, using both 31P and 19F solid-state nuclear magnetic resonance (NMR) and infrared spectroscopy. In particular, several novel approaches have been used, such as the centerband-only detection of exchange (CODEX) technique to investigate lipid lateral diffusion and 19F NMR to probe the environment of the recoverin myristoyl group. The results reveal that the lipid bilayer organization is not disturbed by recoverin. Non-myristoylated recoverin induces a small increase in lipid hydration that appears to be correlated with an increased lipid lateral diffusion. The thermal stability of recoverin remains similar in the absence or presence of lipids and Ca2+. Fluorine atoms have been strategically introduced at positions 4 or 12 on the myristoyl moiety of recoverin to, respectively, probe its behavior in the interfacial and more hydrophobic regions of the membrane. 19F NMR results allow the observation of the calcium-myristoyl switch, the myristoyl group experiencing two different environments in the absence of Ca2+ and the immobilization of the recoverin myristoyl moiety in phosphatidylcholine membranes in the presence of Ca2+.


Asunto(s)
Membrana Celular/metabolismo , Recoverina/metabolismo , Calcio/metabolismo , Difusión , Metabolismo de los Lípidos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Ácido Mirístico/metabolismo , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Recoverina/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
7.
Biochem Biophys Res Commun ; 490(4): 1268-1273, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-28684313

RESUMEN

Recoverin is the only protein for which the phenomenon of calcium-myristoyl switch has been demonstrated without ambiguity. It is located in rod disk membranes where the highest content in polyunsaturated lipid acyl chains can be found. However, although essential to better understand the inactivation of the phototransduction process, the role of membrane fluidity on recoverin recruitment is unclear. We have therefore investigated the immobilization of the recoverin myristoyl moiety in the presence of phosphocholine bilayers using 2H solid-state NMR spectroscopy. Several lipids with different acyl chains were selected to investigate model membranes characterized by different fluidity. Immobilization of the recoverin myristoyl moiety was successfully observed but only in the presence of calcium and in specific lipid disordered states, showing that an optimal fluidity is required for recoverin immobilization.


Asunto(s)
Calcio/química , Membrana Dobles de Lípidos/química , Ácido Mirístico/química , Recoverina/química , Tensoactivos/química , Dimiristoilfosfatidilcolina/química , Difenilhexatrieno/química , Espectroscopía de Resonancia Magnética , Fluidez de la Membrana , Fosfatidilcolinas/química , Fosfatidilgliceroles/química
8.
Adv Colloid Interface Sci ; 243: 60-76, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28372794

RESUMEN

This review presents data on the influence of various experimental parameters on the binding of proteins onto Langmuir lipid monolayers. The users of the Langmuir methodology are often unaware of the importance of choosing appropriate experimental conditions to validate the data acquired with this method. The protein Retinitis pigmentosa 2 (RP2) has been used throughout this review to illustrate the influence of these experimental parameters on the data gathered with Langmuir monolayers. The methods detailed in this review include the determination of protein binding parameters from the measurement of adsorption isotherms, infrared spectra of the protein in solution and in monolayers, ellipsometric isotherms and fluorescence micrographs.

9.
J Am Chem Soc ; 138(41): 13533-13540, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27689444

RESUMEN

Recoverin undergoes a calcium-myristoyl switch during visual phototransduction. Indeed, calcium binding by recoverin results in the extrusion of its myristoyl group, which allows its membrane binding. However, the contribution of particular lipids and of specific amino acids of recoverin in its membrane binding has not yet been demonstrated. In the present work, the affinity of recoverin for the negatively charged phosphatidylserine has been clearly shown to be governed by a cluster of positively charged residues located in its N-terminal segment. Moreover, the calcium-myristoyl switch of recoverin was only observed upon binding onto monolayers of phosphatidylserine and not in the case of other anionic phospholipids. Fluorescence microscopy experiments with mixed lipid monolayers allowed confirmation of the specific binding of myristoylated recoverin to phosphatidylserine, whereas the extent of penetration of recoverin in phosphatidylserine monolayers was estimated by ellipsometry. A model has thus been proposed for the membrane binding of myristoylated recoverin in the presence of calcium.

10.
Biochemistry ; 55(24): 3481-91, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27240971

RESUMEN

Recoverin is a protein involved in the phototransduction cascade by regulating the activity of rhodopsin kinase through a calcium-dependent binding process at the surface of rod outer segment disk membranes. Understanding how calcium modulates these interactions and how it interacts with anionic lipid membranes is necessary to gain insights into the function of recoverin. In this work, infrared spectroscopy allowed us to show that the availability of calcium to recoverin is modulated by the presence of complexes involving phosphatidylglycerol (PG), which in turn regulates its interactions with this negatively charged lipid. Calcium can indeed be sequestered into strongly bound complexes with PG and is thus sparingly available to recoverin. The thermal stability of recoverin then decreases, which results in weakened interactions with PG. By contrast, when calcium is fully available to recoverin, the protein is thermally stable, indicating that it binds two calcium ions, which results in favorable interactions with negatively charged lipids. Consequently, the protein induces an increase in the chain-melting phase transition temperature of PG, which is indicative of an enhanced lipid chain packing resulting from the peripheral location of the protein. The secondary structure of recoverin is not affected by its interactions with anionic membrane lipids. Similar results have been obtained with saturated and unsaturated anionic lipids. This work shows that the recruitment of recoverin at the surface of anionic lipid membranes is dependent on the availability of calcium.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Fosfatidilgliceroles/metabolismo , Recoverina/metabolismo , Humanos , Unión Proteica , Conformación Proteica , Recoverina/química , Espectrofotometría Infrarroja
11.
Biochemistry ; 54(16): 2560-70, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25844643

RESUMEN

Retinitis pigmentosa 2 (RP2) is an ubiquitary protein of 350 residues. The N-terminus of RP2 contains putative sites of myristoylation and palmitoylation. The dually acylated protein is predominantly localized to the plasma membrane. However, clinically occurring substitution mutations of RP2 in photoreceptors lead to the expression of a nonacylated protein, which was shown to be misrouted to intracellular organelles using different cell lines. However, the parameters responsible for the modulation of the membrane binding of nonacylated RP2 (naRP2) are still largely unknown. The maximal insertion pressure of naRP2 has thus been determined after its injection into the subphase underneath monolayers of phospholipids, which are typical of photoreceptor membranes. These data demonstrated that naRP2 shows a preferential binding to saturated phospholipid monolayers. Moreover, polarization modulation infrared reflection absorption spectroscopy has allowed comparison of the secondary structure of this protein in solution and upon binding to phospholipid monolayers. In addition, simulations of these spectra have allowed to determine that the ß-helix of naRP2 has an orientation of 60° with respect to the normal, which remains unchanged regardless of the type of phospholipid. Finally, ellipsometric measurements of naRP2 demonstrated that its particular affinity for saturated phospholipids can be explained by its larger extent of insertion in this phospholipid monolayer compared to that in polyunsaturated phospholipid monolayers.


Asunto(s)
Proteínas del Ojo/química , Péptidos y Proteínas de Señalización Intracelular/química , Lipoilación , Proteínas de la Membrana/química , Membranas Artificiales , Fosfolípidos/química , Acilación , Sustitución de Aminoácidos , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de Unión al GTP , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación Missense , Fosfolípidos/genética , Fosfolípidos/metabolismo , Estructura Secundaria de Proteína
12.
Biochim Biophys Acta ; 1844(6): 1128-36, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24613493

RESUMEN

Lecithin:retinol acyltransferase (LRAT) plays a major role in the vertebrate visual cycle. Indeed, it is responsible for the esterification of all-trans retinol into all-trans retinyl esters, which can then be stored in microsomes or further metabolized to produce the chromophore of rhodopsin. In the present study, a detailed characterization of the enzymatic properties of truncated LRAT (tLRAT) has been achieved using in vitro assay conditions. A much larger tLRAT activity has been obtained compared to previous reports and to an enzyme with a similar activity. In addition, tLRAT is able to hydrolyze phospholipids bearing different chain lengths with a preference for micellar aggregated substrates. It therefore presents an interfacial activation property, which is typical of classical phospholipases. Furthermore, given that stability is a very important quality of an enzyme, the influence of different parameters on the activity and stability of tLRAT has thus been studied in detail. For example, storage buffer has a strong effect on tLRAT activity and high enzyme stability has been observed at room temperature. The thermostability of tLRAT has also been investigated using circular dichroism and infrared spectroscopy. A decrease in the activity of tLRAT was observed beyond 70°C, accompanied by a modification of its secondary structure, i.e. a decrease of its α-helical content and the appearance of unordered structures and aggregated ß-sheets. Nevertheless, residual activity could still be observed after heating tLRAT up to 100°C. The results of this study highly improved our understanding of this enzyme.


Asunto(s)
Aciltransferasas/química , Lecitinas/química , Éteres Fosfolípidos/química , Vitamina A/química , Aciltransferasas/genética , Dicroismo Circular , Escherichia coli/genética , Escherichia coli/metabolismo , Calor , Humanos , Cinética , Micelas , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrofotometría Infrarroja , Especificidad por Sustrato
13.
Adv Colloid Interface Sci ; 207: 223-39, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24560216

RESUMEN

Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid-peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.


Asunto(s)
Proteínas de la Membrana/química , Modelos Biológicos , Fragmentos de Péptidos/química , Péptidos/química , Fosfolípidos/química , Animales , Fenómenos Biofísicos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Péptidos/metabolismo , Fosfolípidos/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Propiedades de Superficie
14.
Biochemistry ; 53(1): 48-56, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24359287

RESUMEN

To evaluate the structural stability of recoverin, a member of the neuronal calcium sensor family, the effect of temperature, myristoylation, and calcium:protein molar ratio on its secondary structure has been studied by transmission infrared spectroscopy. On the basis of the data, the protein predominantly adopts α-helical structures (∼50-55%) with turns, unordered structures, and ß-sheets at 25 °C. The data show no significant impact of the presence of calcium and myristoylation on secondary structure. It is found that, in the absence of calcium, recoverin denatures and self-aggregates while being heated, with the formation of intermolecular antiparallel ß-sheets. The nonmyristoylated protein (Rec-nMyr) exhibits a lower temperature threshold of aggregation and a higher intermolecular ß-sheet content at 65 °C than the myristoylated protein (Rec-Myr). The former thus appears to be less thermally stable than the latter. In the presence of excess calcium ions (calcium:protein ratio of 10), the protein is thermally stable up to 65 °C with no significant conformational change, the presence of the myristoyl chain having no effect on the thermal stability of recoverin under these conditions. A decrease in the thermal stability of recoverin is observed as the calcium:protein molar ratio decreases, with Rec-nMyr being less stable than Rec-Myr. The data overall suggest that a minimal number of coordinated calcium ions is necessary to fully stabilize the structure of recoverin and that, when bound to the membrane, i.e., when the myristoyl chain protrudes from the interior pocket, recoverin should be more stable than in a Ca-free solution, i.e., when the myristoyl chain is sequestered in the interior.


Asunto(s)
Calcio/metabolismo , Ácido Mirístico/metabolismo , Estabilidad Proteica , Recoverina/química , Proteínas de Unión al Calcio/química , Estructura Secundaria de Proteína , Recoverina/metabolismo , Espectrofotometría Infrarroja , Temperatura
15.
Colloids Surf B Biointerfaces ; 109: 109-14, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23624278

RESUMEN

Polyunsaturated fatty acids (PUFA) are particularly susceptible to oxidation. The resulting oxidized products may exert toxic effects. In particular, information is lacking on the effect of oxidized polyunsaturated phospholipid membranes on protein binding. This is particularly important for photoreceptors where many processes take place at the membrane surface because of their very large content in polyunsaturated phospholipids. Langmuir monolayers were thus used to determine the effect of oxidized phospholipids on the binding parameters of two proteins located in photoreceptors: Retinitis pigmentosa 2 (RP2) and recoverin. Measurements were performed using lipid oxidized during storage in solution and directly at the air-water interface. Large differences were observed between the binding parameters of RP2 and recoverin in the presence of intact and oxidized 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine (DDPC). Indeed, large decreases of the maximum insertion pressure, ΔΠ0 and ΔΠ were observed when protein binding was compared between intact and oxidized DDPC. Altered protein binding in the presence of oxidized lipids could thus lead to improper membrane processes and various cellular malfunctioning and diseases.


Asunto(s)
Ácidos Grasos Insaturados/química , Fosfolípidos/química , Recoverina/química , Sitios de Unión , Oxidación-Reducción , Propiedades de Superficie
16.
BMC Plant Biol ; 12: 198, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23116303

RESUMEN

BACKGROUND: Studies reported unintended pleiotropic effects for a number of pesticidal proteins ectopically expressed in transgenic crops, but the nature and significance of such effects in planta remain poorly understood. Here we assessed the effects of corn cystatin II (CCII), a potent inhibitor of C1A cysteine (Cys) proteases considered for insect and pathogen control, on the leaf proteome and pathogen resistance status of potato lines constitutively expressing this protein. RESULTS: The leaf proteome of lines accumulating CCII at different levels was resolved by 2-dimensional gel electrophoresis and compared with the leaf proteome of a control (parental) line. Out of ca. 700 proteins monitored on 2-D gels, 23 were significantly up- or downregulated in CCII-expressing leaves, including 14 proteins detected de novo or up-regulated by more than five-fold compared to the control. Most up-regulated proteins were abiotic or biotic stress-responsive proteins, including different secretory peroxidases, wound inducible protease inhibitors and pathogenesis-related proteins. Accordingly, infection of leaf tissues by the fungal necrotroph Botryris cinerea was prevented in CCII-expressing plants, despite a null impact of CCII on growth of this pathogen and the absence of extracellular Cys protease targets for the inhibitor. CONCLUSIONS: These data point to the onset of pleiotropic effects altering the leaf proteome in transgenic plants expressing recombinant protease inhibitors. They also show the potential of these proteins as ectopic modulators of stress responses in planta, useful to engineer biotic or abiotic stress tolerance in crop plants of economic significance.


Asunto(s)
Cistatinas/metabolismo , Grano Comestible/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Botrytis/efectos de los fármacos , Botrytis/enzimología , Botrytis/crecimiento & desarrollo , Cromatografía Liquida , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Electroforesis en Gel Bidimensional , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/enzimología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Pleiotropía Genética/efectos de los fármacos , Espectrometría de Masas , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Inhibidores de Proteasas/farmacología , Proteoma/metabolismo , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/microbiología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
17.
Langmuir ; 28(25): 9680-8, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22686284

RESUMEN

Langmuir monolayers were used to characterize the influence of the physical state of phospholipid monolayers on the binding of protein Retinis Pigmentosa 2 (RP2). The binding parameters of RP2 (maximum insertion pressure (MIP), synergy and ΔΠ(0)) in monolayers were thus analyzed in the presence of phospholipids bearing increasing fatty acyl chain lengths at temperatures where their liquid-expanded (LE), liquid-condensed (LC), or solid-condensed (SC) states can be individually observed. The data show that a larger value of synergy is observed in the LC/SC states than in the LE state, independent of the fatty acyl chain length of phospholipids. Moreover, both the MIP and the ΔΠ(0) increase with the fatty acyl chain length when phospholipids are in the LC/SC state, whereas those binding parameters remain almost unchanged when phospholipids are in the LE state. This effect of the phospholipid physical state on the binding of RP2 was further demonstrated by measurements performed in the presence of a phospholipid monolayer showing a phase transition from the LE to the LC state at room temperature. The data collected are showing that very similar values of MIP but very different values of synergy and ΔΠ(0) are obtained in the LE (below the phase transition) and LC (above the phase transition) states. In addition, the binding parameters of RP2 in the LE (below the phase transition) as well as in the LC (above the phase transition) states were found to be indistinguishable from those where single LC and LE states are respectively observed. The preference of RP2 for binding phospholipids in the LC state was then confirmed by the observation of a large modification of the shape of the LC domains in the phase transition. Therefore, protein binding parameters can be strongly influenced by the physical state of phospholipid monolayers. Moreover, measurements performed with the α/ß domain of RP2 strongly suggest that the ß helix of RP2 plays a major role in the preferential binding of this protein to phospholipids in the LC state.


Asunto(s)
Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Fenómenos Físicos , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Adsorción , Proteínas de la Membrana/química , Fosfolípidos/química , Unión Proteica , Estructura Terciaria de Proteína
18.
Langmuir ; 28(7): 3516-23, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22260449

RESUMEN

Lecithin:retinol acyltransferase (LRAT) is a 230 amino acid membrane-associated protein which catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester. A truncated form of LRAT (tLRAT), which contains the residues required for catalysis but which is lacking the N- and C-terminal hydrophobic segments, was produced to study its membrane binding properties. Measurements of the maximum insertion pressure of tLRAT, which is higher than the estimated lateral pressure of membranes, and the positive synergy factor a argue in favor of a strong binding of tLRAT to phospholipid monolayers. Moreover, the binding, secondary structure and orientation of the peptides corresponding to its N- and C-terminal hydrophobic segments of LRAT have been studied by circular dichroism and polarization-modulation infrared reflection absorption spectroscopy in monolayers. The results show that these peptides spontaneously bind to lipid monolayers and adopt an α-helical secondary structure. On the basis of these data, a new membrane topology model of LRAT is proposed where its N- and C-terminal segments allow to anchor this protein to the lipid bilayer.


Asunto(s)
Aciltransferasas/metabolismo , Lecitinas , Lípidos/química , Proteínas de la Membrana/química , Aciltransferasas/química , Modelos Biológicos , Péptidos , Unión Proteica , Estructura Secundaria de Proteína , Liposomas Unilamelares/metabolismo
19.
Biotechniques ; 51(3): 193-4, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21906042

RESUMEN

Glutathione S-transferase (GST) is widely used to prepare and purify GSTtagged fusion proteins. Although GST improves protein solubility, detergents must often be used to achieve protein solubilization from bacterial lysates. However, purification of GST by affinity chromatography cannot be achieved in the presence of even low concentrations of the detergent sodium dodecyl sulfate (SDS). Here we show that 2-methyl-2,4-pentanediol (MPD) can prevent SDS from interfering with purification of GST, thus enabling purification of proteins that require SDS to improve their solubility.


Asunto(s)
Cromatografía de Afinidad/métodos , Glutatión Transferasa/aislamiento & purificación , Glicoles/química , Dodecil Sulfato de Sodio/química , Escherichia coli/genética , Glutatión Transferasa/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Solubilidad
20.
Exp Eye Res ; 93(5): 778-81, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21821024

RESUMEN

Recent work on Lecithin:retinol acyltransferase (LRAT) allowed to gather a large amount of information on its secondary structure, enzymatic properties and membrane binding. A truncated form of LRAT (tLRAT) as well as its S175R mutant leading to retinis pigmentosa, a severe form of retinal dystrophy, were studied to understand the role of this mutation on the dysfunction of this protein. Consistently with previous reports, the S175R-tLRAT mutant was shown to lack enzyme activity. However, very similar secondary structures probed by circular dichroism have been obtained with the S175R-tLRAT mutant and tLRAT. Moreover, similar values of maximum insertion pressure of the S175R-tLRAT mutant and tLRAT have been obtained using Langmuir monolayers, thus suggesting that the S175R mutation has no effect on the membrane binding properties of tLRAT. These findings leave open the possibility that the loss of enzymatic activity associated with the S175R mutant is related to loss of an essential nucleophile near the active site, or alternatively, to steric obstruction of the active site that impedes substrate binding.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Mutación Missense , Aciltransferasas/genética , Dicroismo Circular , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Vitamina A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...