Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39116349

RESUMEN

Studies in animal models suggest a linkage between inflammatory response to injury and subsequent nephron loss during acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Failure of normal repair during CKD transition correlates with de novo expression of vascular cell adhesion protein-1 (VCAM-1) by a subset of injured proximal tubule cells. This study identifies the role of VCAM-1 expression in promoting the failed repair state. Single-cell transcriptome analysis of patients with AKI and CKD, and whole kidney RNA and protein analyses of mouse models of CKD, confirmed a marked increase of VCAM-1 expression in the proximal tubules of injured kidneys. In immortalized mouse proximal tubular (MPT) cells and primary cultured renal cells (PCRCs), VCAM-1 expression was induced by proinflammatory cytokines including TNFα and IL-1ß. Analyses of bulk RNA sequencing of TNFα-treated PCRCs or pseudo-bulk RNA sequencing of biopsies from the Kidney Precision Medicine Project (KPMP) datasets indicated activation of NF-κB and an enrichment of inflammatory response and cell adhesion pathways in VCAM-1-positive cells. Pharmacologic inhibition of NF-κB signaling or genetic deletion of myeloid differentiation factor 88 (Myd88) and TIR-domain-containing adapter-inducing interferon-ß (Trif) suppressed TNFα- and IL-1ß-induced VCAM-1 expression in vitro. TNFα stimulation or overexpression of VCAM-1 significantly increased splenocyte adhesion to the MPT monolayer in culture. These results demonstrate that persistence of proinflammatory cytokines after AKI can induce NF-κB-dependent VCAM-1 expression by proximal tubule cells, mediating increased immune cell adhesion to the tubule and thus promoting further tubule injury and greater risk of progression from AKI to CKD.

2.
Kidney Int Rep ; 9(5): 1354-1368, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707807

RESUMEN

Introduction: Focal segmental glomerulosclerosis (FSGS), the most common primary glomerular disease leading to end-stage kidney disease (ESKD), is characterized by podocyte injury and depletion, whereas minimal change disease (MCD) has better outcomes despite podocyte injury. Identifying mechanisms capable of preventing podocytopenia during injury could transform FSGS to an "MCD-like" state. Preclinical data have reported conversion of an MCD-like injury to one with podocytopenia and FSGS by inhibition of AMP-kinase (AMPK) in podocytes. Conversely, in FSGS, AMPK-activation using metformin (MF) mitigated podocytopenia and azotemia. Observational studies also support beneficial effects of MF on proteinuria and chronic kidney disease (CKD) outcomes in diabetes. A randomized controlled trial (RCT) to test MF in podocyte injury with FSGS has not yet been conducted. Methods: We report the rationale and design of phase 2, double-blind, placebo-controlled RCT evaluating the efficacy and safety of MF as adjunctive therapy in FSGS. By randomizing 30 patients with biopsy-confirmed FSGS to MF or placebo (along with standard immunosuppression), we will study mechanistic biomarkers that correlate with podocyte injury or depletion and evaluate outcomes after 6 months. We specifically integrate novel urine, blood, and tissue markers as surrogates for FSGS progression along with unbiased profiling strategies. Results and Conclusion: Our phase 2 trial will provide insight into the potential efficacy and safety of MF as adjunctive therapy in FSGS-a crucial step to developing a larger phase 3 study. The mechanistic assays here will guide the design of other FSGS trials and contribute to understanding AMPK activation as a potential therapeutic target in FSGS. By repurposing an inexpensive agent, our results will have implications for FSGS treatment in resource-poor settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...