Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Acta Trop ; 239: 106837, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36657506

RESUMEN

Aedes aegypti is one of the most dominant mosquito species in the urban areas of Miami-Dade County, Florida, and is responsible for the local arbovirus transmissions. Since August 2016, mosquito traps have been placed throughout the county to improve surveillance and guide mosquito control and arbovirus outbreak response. In this paper, we develop a deterministic mosquito population model, estimate model parameters by using local entomological and temperature data, and use the model to calibrate the mosquito trap data from 2017 to 2019. We further use the model to compare the Ae. aegypti population and evaluate the impact of rainfall intensity in different urban built environments. Our results show that rainfall affects the breeding sites and the abundance of Ae. aegypti more significantly in tourist areas than in residential places. In addition, we apply the model to quantitatively assess the effectiveness of vector control strategies in Miami-Dade County.


Asunto(s)
Aedes , Arbovirus , Animales , Mosquitos Vectores , Control de Mosquitos/métodos , Modelos Teóricos , Proliferación Celular
2.
J Math Biol ; 85(1): 6, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35796836

RESUMEN

In this paper, we use an integrodifference equation model and pairwise invasion analysis to find what dispersal strategies are evolutionarily stable strategies (also known as evolutionarily steady or ESS) when there is spatial heterogeneity and possibly seasonal variation in habitat suitability. In that case there are both advantages and disadvantages of dispersing. We begin with the case where all spatial locations can support a viable population, and then consider the case where there are non-viable regions in the habitat. If the viable regions vary seasonally, and the viable regions in summer and winter do not overlap, dispersal may really be necessary for sustaining a population. Our findings generally align with previous findings in the literature that were based on other modeling frameworks, namely that dispersal strategies associated with ideal free distributions are evolutionarily stable. In the case where only part of the habitat can sustain a population, we show that a partial occupation ideal free distribution that occupies only the viable region is associated with a dispersal strategy that is evolutionarily stable. As in some previous works, the proofs of these results make use of properties of line sum symmetric functions, which are analogous to those of line sum symmetric matrices but applied to integral operators.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Ecosistema , Dinámica Poblacional , Estaciones del Año
3.
AoB Plants ; 12(2): plz048, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32346468

RESUMEN

Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant's life history and environmental variability that ultimately influences a population's ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.

4.
J Math Biol ; 80(1-2): 3-37, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30392106

RESUMEN

We study the evolutionary stability of dispersal strategies, including but not limited to those that can produce ideal free population distributions (that is, distributions where all individuals have equal fitness and there is no net movement of individuals at equilibrium). The environment is assumed to be variable in space but constant in time. We assume that there is a separation of times scales, so that dispersal occurs on a fast timescale, evolution occurs on a slow timescale, and population dynamics and interactions occur on an intermediate timescale. Starting with advection-diffusion models for dispersal without population dynamics, we use the large time limits of profiles for population distributions together with the distribution of resources in the environment to calculate growth and interaction coefficients in logistic and Lotka-Volterra ordinary differential equations describing population dynamics. We then use a pairwise invasibility analysis approach motivated by adaptive dynamics to study the evolutionary and/or convergence stability of strategies determined by various assumptions about the advection and diffusion terms in the original advection-diffusion dispersal models. Among other results we find that those strategies which can produce an ideal free distribution are evolutionarily stable.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Análisis Espacio-Temporal , Animales , Dinámica Poblacional/estadística & datos numéricos , Dinámica Poblacional/tendencias , Factores de Tiempo
5.
J Math Biol ; 80(1-2): 61-92, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30783745

RESUMEN

Many types of organisms disperse through heterogeneous environments as part of their life histories. For various models of dispersal, including reaction-advection-diffusion models in continuously varying environments, it has been shown by pairwise invasibility analysis that dispersal strategies which generate an ideal free distribution are evolutionarily steady strategies (ESS, also known as evolutionarily stable strategies) and are neighborhood invader strategies (NIS). That is, populations using such strategies can both invade and resist invasion by populations using strategies that do not produce an ideal free distribution. (The ideal free distribution arises from the assumption that organisms inhabiting heterogeneous environments should move to maximize their fitness, which allows a mathematical characterization in terms of fitness equalization.) Classical reaction diffusion models assume that landscapes vary continuously. Landscape ecologists consider landscapes as mosaics of patches where individuals can make movement decisions at sharp interfaces between patches of different quality. We use a recent formulation of reaction-diffusion systems in patchy landscapes to study dispersal strategies by using methods inspired by evolutionary game theory and adaptive dynamics. Specifically, we use a version of pairwise invasibility analysis to show that in patchy environments, the behavioral strategy for movement at boundaries between different patch types that generates an ideal free distribution is both globally evolutionarily steady (ESS) and is a global neighborhood invader strategy (NIS).


Asunto(s)
Evolución Biológica , Modelos Biológicos , Adaptación Fisiológica , Animales , Ecosistema , Teoría del Juego , Movimiento , Dinámica Poblacional
6.
AoB Plants ; 11(5): plz042, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31579119

RESUMEN

The distribution and abundance of plants across the world depends in part on their ability to move, which is commonly characterized by a dispersal kernel. For seeds, the total dispersal kernel (TDK) describes the combined influence of all primary, secondary and higher-order dispersal vectors on the overall dispersal kernel for a plant individual, population, species or community. Understanding the role of each vector within the TDK, and their combined influence on the TDK, is critically important for being able to predict plant responses to a changing biotic or abiotic environment. In addition, fully characterizing the TDK by including all vectors may affect predictions of population spread. Here, we review existing research on the TDK and discuss advances in empirical, conceptual modelling and statistical approaches that will facilitate broader application. The concept is simple, but few examples of well-characterized TDKs exist. We find that significant empirical challenges exist, as many studies do not account for all dispersal vectors (e.g. gravity, higher-order dispersal vectors), inadequately measure or estimate long-distance dispersal resulting from multiple vectors and/or neglect spatial heterogeneity and context dependence. Existing mathematical and conceptual modelling approaches and statistical methods allow fitting individual dispersal kernels and combining them to form a TDK; these will perform best if robust prior information is available. We recommend a modelling cycle to parameterize TDKs, where empirical data inform models, which in turn inform additional data collection. Finally, we recommend that the TDK concept be extended to account for not only where seeds land, but also how that location affects the likelihood of establishing and producing a reproductive adult, i.e. the total effective dispersal kernel.

7.
AoB Plants ; 11(3): plz020, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31198528

RESUMEN

When climatic or environmental conditions change, plant populations must either adapt to these new conditions, or track their niche via seed dispersal. Adaptation of plants to different abiotic environments has mostly been discussed with respect to physiological and demographic parameters that allow local persistence. However, rapid modifications in response to changing environmental conditions can also affect seed dispersal, both via plant traits and via their dispersal agents. Studying such changes empirically is challenging, due to the high variability in dispersal success, resulting from environmental heterogeneity, and substantial phenotypic variability of dispersal-related traits of seeds and their dispersers. The exact mechanisms that drive rapid changes are often not well understood, but the ecological implications of these processes are essential determinants of dispersal success, and deserve more attention from ecologists, especially in the context of adaptation to global change. We outline the evidence for rapid changes in seed dispersal traits by discussing variability due to plasticity or genetics broadly, and describe the specific traits and biological systems in which variability in dispersal is being studied, before discussing some of the potential underlying mechanisms. We then address future research needs and propose a simulation model that incorporates phenotypic plasticity in seed dispersal. We close with a call to action and encourage ecologists and biologist to embrace the challenge of better understanding rapid changes in seed dispersal and their consequences for the reaction of plant populations to global change.

8.
AoB Plants ; 11(2): plz006, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30895154

RESUMEN

Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption.

9.
Math Biosci ; 305: 71-76, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30193955

RESUMEN

Roughly speaking, a population is said to have an ideal free distribution on a spatial region if all of its members can and do locate themselves in a way that optimizes their fitness, allowing for the effects of crowding. Dispersal strategies that can lead to ideal free distributions of populations using them have been shown to exist and to be evolutionarily stable in a number of modeling contexts in the case of habitats that vary in space but not in time. Those modeling contexts include reaction-diffusion-advection models and the analogous models using discrete diffusion or nonlocal dispersal described by integro-differential equations. Furthermore, in the case of reaction-diffusion-advection models and their nonlocal analogues, there are strategies that allow populations to achieve an ideal free distribution by using only local information about environmental quality and/or gradients. We show that in the context of reaction-diffusion-advection models for time-periodic environments with spatially varying resource levels, where the total level of resources in an environment remains fixed but its location varies seasonally, there are strategies that allow populations to achieve an ideal free distribution. We also show that those strategies are evolutionarily stable. However, achieving an ideal free distribution in a time-periodic environment requires the use of nonlocal information about the environment such as might be derived from experience and memory, social learning, or genetic programming.


Asunto(s)
Distribución Animal , Evolución Biológica , Modelos Biológicos , Animales , Ecosistema , Aptitud Genética , Conceptos Matemáticos , Periodicidad , Dinámica Poblacional/estadística & datos numéricos
10.
J Theor Biol ; 455: 342-356, 2018 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-30053386

RESUMEN

Chikungunya, dengue, and Zika viruses are all transmitted by Aedes aegypti and Aedes albopictus mosquito species, had been imported to Florida and caused local outbreaks. We propose a deterministic model to study the importation and local transmission of these mosquito-borne diseases. The purpose is to model and mimic the importation of these viruses to Florida via travelers, local infections in domestic mosquitoes by imported travelers, and finally non-travel related transmissions to local humans by infected local mosquitoes. As a case study, the model will be used to simulate the accumulative Zika cases in Florida. Since the disease system is driven by a continuing input of infections from outside sources, orthodox analytic methods based on the calculation of the basic reproduction number are inadequate to describe and predict their behavior. Via steady-state analysis and sensitivity analysis, effective control and prevention measures for these mosquito-borne diseases are tested.


Asunto(s)
Aedes/virología , Brotes de Enfermedades , Modelos Biológicos , Mosquitos Vectores/virología , Infección por el Virus Zika , Virus Zika , Animales , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/transmisión , Virus Chikungunya , Dengue/epidemiología , Dengue/transmisión , Virus del Dengue , Florida/epidemiología , Humanos , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/transmisión
11.
J Biol Dyn ; 12(1): 288-317, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29527959

RESUMEN

Most classical models for the movement of organisms assume that all individuals have the same patterns and rates of movement (for example, diffusion with a fixed diffusion coefficient) but there is empirical evidence that movement rates and patterns may vary among different individuals. A simple way to capture variation in dispersal that has been suggested in the ecological literature is to allow individuals to switch between two distinct dispersal modes. We study models for populations whose members can switch between two different nonzero rates of diffusion and whose local population dynamics are subject to density dependence of logistic type. The resulting models are reaction-diffusion systems that can be cooperative at some population densities and competitive at others. We assume that the focal population inhabits a bounded region and study how its overall dynamics depend on the parameters describing switching rates and local population dynamics. (Traveling waves and spread rates have been studied for similar models in the context of biological invasions.) The analytic methods include ideas and results from reaction-diffusion theory, semi-dynamical systems, and bifurcation/continuation theory.


Asunto(s)
Ecosistema , Movimiento , Dinámica Poblacional , Animales , Difusión , Humanos , Modelos Biológicos
12.
Math Biosci Eng ; 14(4): 953-973, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28608705

RESUMEN

In this paper we employ a discrete-diffusion modeling framework to examine a system inspired by the nano-ecology experiments on the bacterium Escherichia coli reported upon in Keymer et al. (2006). In these experiments, the bacteria inhabit a linear array of 85 ``microhabitat patches (MHP's)", linked by comparatively thinner corridors through which bacteria may pass between adjacent MHP's. Each MHP is connected to its own source of nutrient substrate, which flows into the MHP at a rate that can be controlled in the experiment. Logistic dynamics are assumed within each MHP, and nutrient substrate flow determines the prediction of the within MHP dynamics in the absence of bacteria dispersal between patches. Patches where the substrate flow rate is sufficiently high sustain the bacteria in the absence of between patch movement and may be regarded as sources, while those with insufficient substrate flow lead to the extinction of the bacteria in the within patch environment and may be regarded as sinks. We examine the role of dispersal in determining the predictions of the model under source-sink dynamics.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Ecosistema , Modelos Biológicos , Dinámica Poblacional
13.
Am Nat ; 189(5): 474-489, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28410028

RESUMEN

How organisms gather and utilize information about their landscapes is central to understanding land-use patterns and population distributions. When such information originates beyond an individual's immediate vicinity, movement decisions require integrating information out to some perceptual range. Such nonlocal information, whether obtained visually, acoustically, or via chemosensation, provides a field of stimuli that guides movement. Classically, however, models have assumed movement based on purely local information (e.g., chemotaxis, step-selection functions). Here we explore how foragers can exploit nonlocal information to improve their success in dynamic landscapes. Using a continuous time/continuous space model in which we vary both random (diffusive) movement and resource-following (advective) movement, we characterize the optimal perceptual ranges for foragers in dynamic landscapes. Nonlocal information can be highly beneficial, increasing the spatiotemporal concentration of foragers on their resources up to twofold compared with movement based on purely local information. However, nonlocal information is most useful when foragers possess both high advective movement (allowing them to react to transient resources) and low diffusive movement (preventing them from drifting away from resource peaks). Nonlocal information is particularly beneficial in landscapes with sharp (rather than gradual) patch edges and in landscapes with highly transient resources.


Asunto(s)
Ecosistema , Conducta Alimentaria , Movimiento , Percepción , Distribución Animal , Animales , Modelos Biológicos
14.
Math Biosci ; 283: 136-144, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27840280

RESUMEN

Understanding the evolution of dispersal is an important issue in evolutionary ecology. For continuous time models in which individuals disperse throughout their lifetime, it has been shown that a balanced dispersal strategy, which results in an ideal free distribution, is evolutionary stable in spatially varying but temporally constant environments. Many species, however, primarily disperse prior to reproduction (natal dispersal) and less commonly between reproductive events (breeding dispersal). These species include territorial species such as birds and reef fish, and sessile species such as plants, and mollusks. As demographic and dispersal terms combine in a multiplicative way for models of natal dispersal, rather than the additive way for the previously studied models, we develop new mathematical methods to study the evolution of natal dispersal for continuous-time and discrete-time models. A fundamental ecological dichotomy is identified for the non-trivial equilibrium of these models: (i) the per-capita growth rates for individuals in all patches are equal to zero, or (ii) individuals in some patches experience negative per-capita growth rates, while individuals in other patches experience positive per-capita growth rates. The first possibility corresponds to an ideal-free distribution, while the second possibility corresponds to a "source-sink" spatial structure. We prove that populations with a dispersal strategy leading to an ideal-free distribution displace populations with dispersal strategy leading to a source-sink spatial structure. When there are patches which cannot sustain a population, ideal-free strategies can be achieved by sedentary populations, and we show that these populations can displace populations with any irreducible dispersal strategy. Collectively, these results support that evolution selects for natal or breeding dispersal strategies which lead to ideal-free distributions in spatially heterogenous, but temporally homogenous, environments.


Asunto(s)
Evolución Biológica , Ecosistema , Modelos Teóricos , Animales
15.
PLoS Negl Trop Dis ; 9(1): e3388, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569474

RESUMEN

Rift Valley fever (RVF) is an important mosquito-borne viral zoonosis in Africa and the Middle East that causes human deaths and significant economic losses due to huge incidences of death and abortion among infected livestock. Outbreaks of RVF are sporadic and associated with both seasonal and socioeconomic effects. Here we propose an almost periodic three-patch model to investigate the transmission dynamics of RVF virus (RVFV) among ruminants with spatial movements. Our findings indicate that, in Northeastern Africa, human activities, including those associated with the Eid al Adha feast, along with a combination of climatic factors such as rainfall level and hydrological variations, contribute to the transmission and dispersal of the disease pathogen. Moreover, sporadic outbreaks may occur when the two events occur together: 1) abundant livestock are recruited into areas at risk from RVF due to the demand for the religious festival and 2) abundant numbers of mosquitoes emerge. These two factors have been shown to have impacts on the severity of RVF outbreaks. Our numerical results present the transmission dynamics of the disease pathogen over both short and long periods of time, particularly during the festival time. Further, we investigate the impact on patterns of disease outbreaks in each patch brought by festival- and seasonal-driven factors, such as the number of livestock imported daily, the animal transportation speed from patch to patch, and the death rate induced by ceremonial sacrifices. In addition, our simulations show that when the time for festival preparation starts earlier than usual, the risk of massive disease outbreaks rises, particularly in patch 3 (the place where the religious ceremony will be held).


Asunto(s)
Modelos Biológicos , Fiebre del Valle del Rift/transmisión , Virus de la Fiebre del Valle del Rift/fisiología , Estaciones del Año , África/epidemiología , Animales , Culicidae , Brotes de Enfermedades/veterinaria , Femenino , Humanos , Ganado , Periodicidad , Dinámica Poblacional , Fiebre del Valle del Rift/economía , Fiebre del Valle del Rift/epidemiología , Fiebre del Valle del Rift/virología , Factores Socioeconómicos
16.
Bull Math Biol ; 76(8): 2052-72, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25102776

RESUMEN

We propose a mathematical model to investigate the transmission dynamics of Rift Valley fever (RVF) virus among ruminants. Our findings indicate that in endemic areas RVF virus maintains at a very low level among ruminants after outbreaks and subsequent outbreaks may occur when new susceptible ruminants are recruited into endemic areas or abundant numbers of mosquitoes emerge when herd immunity decreases. Many factors have been shown to have impacts on the severity of RVF outbreaks; a higher probability of death due to RVF among ruminants, a higher mosquito:ruminant ratio, or a shorter lifespan of animals can amplify the magnitude of the outbreaks; vaccination helps to reduce the magnitude of RVF outbreaks and the loss of animals efficiently, and the maximum vaccination effort (a high vaccination rate and a larger number of vaccinated animals) is recommended before the commencement of an outbreak but can be reduced later during the enzootic.


Asunto(s)
Brotes de Enfermedades/veterinaria , Modelos Inmunológicos , Fiebre del Valle del Rift/transmisión , Virus de la Fiebre del Valle del Rift/inmunología , Rumiantes/virología , Zoonosis/virología , Animales , Simulación por Computador , Culicidae/virología , Fiebre del Valle del Rift/epidemiología , Fiebre del Valle del Rift/inmunología , Fiebre del Valle del Rift/virología , Rumiantes/inmunología , Vacunación/veterinaria , Zoonosis/epidemiología , Zoonosis/inmunología , Zoonosis/transmisión
17.
Bull Math Biol ; 75(3): 523-42, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23377629

RESUMEN

Rift Valley fever (RVF) is a severe viral zoonosis in Africa and the Middle East that harms both human health and livestock production. It is believed that RVF in Egypt has been repeatedly introduced by the importation of infected animals from Sudan. In this paper, we propose a three-patch model for the process by which animals enter Egypt from Sudan, are moved up the Nile, and then consumed at population centers. The basic reproduction number for each patch is introduced and then the threshold dynamics of the model are established. We simulate an interesting scenario showing a possible explanation of the observed phenomenon of the geographic spread of RVF in Egypt.


Asunto(s)
Culicidae/virología , Epidemias/veterinaria , Modelos Biológicos , Fiebre del Valle del Rift/epidemiología , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Zoonosis/epidemiología , Animales , Número Básico de Reproducción/veterinaria , Simulación por Computador , Egipto/epidemiología , Humanos , Fiebre del Valle del Rift/inmunología , Fiebre del Valle del Rift/transmisión , Virus de la Fiebre del Valle del Rift/inmunología , Sudán , Zoonosis/inmunología , Zoonosis/transmisión , Zoonosis/virología
18.
Math Biosci Eng ; 9(1): 27-60, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22229395

RESUMEN

In this article we compare and contrast the predictions of some spatially explicit and implicit models in the context of a thought problem at the interface of spatial and landscape ecology. The situation we envision is a one-dimensional spatial universe of infinite extent in which there are two disjoint focal patches of a habitat type that is favorable to some specified species. We assume that neither patch is large enough by itself to sustain the species in question indefinitely, but that a single patch of size equal to the combined sizes of the two focal patches provides enough contiguous favorable habitat to sustain the given species indefinitely. When the two patches are separated by a patch of unfavorable matrix habitat, the natural expectation is that the species should persist indefinitely if the two patches are close enough to each other but should go extinct over time when the patches are far enough apart. Our focus here is to examine how different mathematical regimes may be employed to model this situation, with an eye toward exploring the trade-off between the mathematical tractability of the model on one hand and the suitability of its predictions on the other. In particular, we are interested in seeing how precisely the predictions of mathematically rich spatially explicit regimes (reaction-diffusion models, integro-difference models) can be matched by those of ostensibly mathematically simpler spatially implicit patch approximations (discrete-diffusion models, average dispersal success matrix models).


Asunto(s)
Ecosistema , Modelos Teóricos , Animales , Extinción Biológica , Dinámica Poblacional
19.
J Math Biol ; 65(5): 943-65, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22048260

RESUMEN

A central question in the study of the evolution of dispersal is what kind of dispersal strategies are evolutionarily stable. Hastings (Theor Pop Biol 24:244-251, 1983) showed that among unconditional dispersal strategies in a spatially heterogeneous but temporally constant environment, the dispersal strategy with no movement is convergent stable. McPeek and Holt's (Am Nat 140:1010-1027, 1992) work suggested that among conditional dispersal strategies in a spatially heterogeneous but temporally constant environment, an ideal free dispersal strategy, which results in the ideal free distribution for a single species at equilibrium, is evolutionarily stable. We use continuous-time and discrete-space models to determine when the dispersal strategy with no movement is evolutionarily stable and when an ideal free dispersal strategy is evolutionarily stable, both in a spatially heterogeneous but temporally constant environment.


Asunto(s)
Ecosistema , Modelos Biológicos , Animales , Evolución Biológica , Dinámica Poblacional
20.
Math Biosci Eng ; 7(1): 17-36, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20104946

RESUMEN

A general question in the study of the evolution of dispersal is what kind of dispersal strategies can convey competitive advantages and thus will evolve. We consider a two species competition model in which the species are assumed to have the same population dynamics but different dispersal strategies. Both species disperse by random diffusion and advection along certain gradients, with the same random dispersal rates but different advection coefficients. We found a conditional dispersal strategy which results in the ideal free distribution of species, and show that it is a local evolutionarily stable strategy. We further show that this strategy is also a global convergent stable strategy under suitable assumptions, and our results illustrate how the evolution of conditional dispersal can lead to an ideal free distribution. The underlying biological reason is that the species with this particular dispersal strategy can perfectly match the environmental resource, which leads to its fitness being equilibrated across the habitats.


Asunto(s)
Migración Animal , Evolución Biológica , Ecosistema , Modelos Biológicos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA