Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(23): e2313354, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38589015

RESUMEN

Stimulus-responsive polymer-based actuators are extensively studied, with the challenging goal of achieving comprehensive performance metrics that include large output stress and strain, fast response, and versatile actuation modes. The design and fabrication of nanocomposites offer a promising route to integrate the advantages of both polymers and nanoscale fillers, thus ensuring superior performance. Here, it is started from a three-dimensional (3D) porous sponge to fabricate a mutually interpenetrated nanocomposite, in which the embedded carbon nanotube (CNT) network undergoes collective deformation with the shape memory polymer (SMP) matrix during large-degree stretching and releasing, increases junction density with polymer chains and enhances molecular orientation. These features result in substantial improvement of the overall mechanical properties and during thermally actuated contraction, the bulk SMP/CNT composites exhibit output stresses up to 19.5 ± 0.97 MPa and strains up to 69%, accompanied by a rapid response and high energy density, exceeding the majority of recent reports. Furthermore, electrical actuation is also demonstrated via uniform Joule heating across the self-percolated CNT network. Applications such as low-temperature thermal actuated vascular stent and wound dressing are explored. These findings lay out a universal blueprint for developing robust and highly deformable SMP/CNT nanocomposite actuators with broad potential applications.

2.
Small ; : e2310469, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38282141

RESUMEN

Water splitting (or, water electrolysis) is considered as a promising approach to produce green hydrogen and relieve the ever-increasing energy consumption as well as the accompanied environmental impact. Development of high-efficiency, low-cost practical water-splitting systems demands elegant design and fabrication of catalyst-loaded electrodes with both high activity and long-life time. To this end, dimensional engineering strategies, which effectively tune the microstructure and activity of electrodes as well as the electrochemical kinetics, play an important role and have been extensively reported over the past years. Here, a type of most investigated electrode configurations is reviewed, combining particulate catalysts with 3D porous substrates (aerogels, metal foams, hydrogels, etc.), which offer special advantages in the field of water splitting. It is analyzed the design principles, structural and interfacial characteristics, and performance of particle-3D substrate electrode systems including overpotential, cycle life, and the underlying mechanism toward improved catalytic properties. In particular, it is also categorized the catalysts as different dimensional particles, and show the importance of building hybrid composite electrodes by dimensional control and engineering. Finally, present challenges and possible research directions toward low-cost high-efficiency water splitting and hydrogen production is discussed.

3.
Nat Commun ; 15(1): 715, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267440

RESUMEN

Large-scale brain activity mapping is important for understanding the neural basis of behaviour. Electrocorticograms (ECoGs) have high spatiotemporal resolution, bandwidth, and signal quality. However, the invasiveness and surgical risks of electrode array implantation limit its application scope. We developed an ultrathin, flexible shape-changing electrode array (SCEA) for large-scale ECoG mapping with minimal invasiveness. SCEAs were inserted into cortical surfaces in compressed states through small openings in the skull or dura and fully expanded to cover large cortical areas. MRI and histological studies on rats proved the minimal invasiveness of the implantation process and the high chronic biocompatibility of the SCEAs. High-quality micro-ECoG activities mapped with SCEAs from male rodent brains during seizures and canine brains during the emergence period revealed the spatiotemporal organization of different brain states with resolution and bandwidth that cannot be achieved using existing noninvasive techniques. The biocompatibility and ability to map large-scale physiological and pathological cortical activities with high spatiotemporal resolution, bandwidth, and signal quality in a minimally invasive manner offer SCEAs as a superior tool for applications ranging from fundamental brain research to brain-machine interfaces.


Asunto(s)
Mapeo Encefálico , Encéfalo , Masculino , Animales , Perros , Ratas , Encéfalo/diagnóstico por imagen , Convulsiones , Cabeza , Electrodos
4.
J Colloid Interface Sci ; 658: 137-147, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100970

RESUMEN

Hydrogel-based functional materials had attracted great attention in the fields of artificial intelligence, soft robotics, and motion monitoring. However, the gelation of hydrogels induced by free radical polymerization typically required heating, light exposure, and other conditions, limiting their practical applications and development in real-life scenarios. In this study, a simple and direct method was proposed to achieve rapid gelation at room temperature by incorporating reductive MXene sheets in conjunction with metal ions into the chitosan network and inducing the formation of a polyacrylamide network in an extremely short time (10 s). This resulted in a dual-network MXene-crosslinked conductive hydrogel composite that exhibited exceptional stretchability (1350 %), remarkably low dissipated energy (0.40 kJ m-3 at 100 % strain), high sensitivity (GF = 2.86 at 300-500 % strain), and strong adhesion to various substrate surfaces. The study demonstrated potential applications in the reliable detection of various motions, including repetitive fine movements and large-scale human body motions. This work provided a feasible platform for developing integrated wearable health-monitoring electronic systems.


Asunto(s)
Quitosano , Nitritos , Elementos de Transición , Dispositivos Electrónicos Vestibles , Humanos , Hidrogeles , Inteligencia Artificial , Conductividad Eléctrica
5.
ACS Nano ; 17(18): 18382-18391, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37671672

RESUMEN

Aerogels and foams are promising electrode materials owing to their lightweight, high porosity, and large surface area for creating abundant active/catalytic sites. Tailoring their porous structure is essential toward maximum electrode performance yet remains challenging in the field. Here, by modifying a pristine carbon nanotube (CNT) sponge with random internal distribution, we present a CNT platform consisting of regular, orthogonally intercrossed through-channels centered at a suitable lateral size (around 5 µm), with low tortuosity and enhanced electrochemical kinetics under predefined compression. Our CNT platforms, grafted by bifunctional transitional metal hydroxide catalyst, overcome considerable challenges of both long cycle life and high rates simultaneously, serving as Li-O2 cathodes and achieving lifetime of 500 cycles at 0.5 mA cm-2 (275 cycles even at 1 mA cm-2) and also displaying high areal capacity (27 mA h cm-2), which are superior to most of the recently reported porous electrodes based on various materials. The mechanism involving fast triple-phase transport and reversible discharge product deposition, enabled by catalyst-loaded orthogonal channels, has been disclosed. Such structure-tailored robust CNT platforms could find many applications in electrochemical catalysis and energy storage systems.

6.
Small Methods ; 7(10): e2300518, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37401189

RESUMEN

Two-dimensional transition metal carbide/nitrides (MXenes) have recently received extensive attention due to their diverse material types and versatile structures, large-scale production, and excellent properties. MXene sheets possess abundant hydrophilic functional groups on their surface, which enable them to be assembled into macroscopic fibers or compounded with other functional materials to produce composite fibers. This review aims to provide a comprehensive analysis of MXene fibers in terms of their fabrication, structure, properties, and recent applications as flexible and wearable electronics. The review will discuss the principles of different methods used to synthesize MXene fibers and analyze the characteristics of the as-synthesized fibers, with a particular focus on the wet spinning method. The fundamental relationships between the microstructure of MXene fibers and their resulting mechanical and electrical properties will be explored. Furthermore, the review will elaborate on the progress made in MXene-based fibers in the rapidly growing field of wearable electronics applications, provide insights into future development of MXene fiber materials and propose solutions to the challenges facing practical applications.

7.
ACS Appl Mater Interfaces ; 14(37): 41997-42006, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36070442

RESUMEN

Two-dimensional (2D) MXene nanosheets are attractive for electrochemical energy storage applications due to their superior surface-controlled charge storage capacity. However, the slow ion transport in the closely packed electrode limits their electrochemical performances. Meanwhile, the restricted surface-controlled pseudocapacitance of MXene nanosheets requires to be enhanced. Herein, a well-controlled electrophoretic deposition strategy is developed to disperse Ti3C2Tx nanosheets into a freestanding, porous carbon nanotube (CNT) sponge. The constructed Ti3C2Tx@CNT hybrid sponge can provide high-speed ion-transport pathways for the charge-discharge process. Furthermore, by tuning the deposition potential, the inserted MXene nanosheets can be partially oxidized, boosting the pseudocapacitance performance. A large gravimetric capacitance of 468 F g-1 at 10 mV s-1 and a retention of 79.8% at 100 mV s-1 can be achieved in the Ti3C2Tx@CNT electrode. Meanwhile, the highest areal capacitance of 661 mF cm-2 at 1 mA cm-2 was obtained in the sample with high-loading Ti3C2Tx. For the assembled symmetric supercapacitor, 92.8% of the capacitance is retained after 10 000 cycles of the charge-discharge process at 10 mA cm-2. Thus, this study develops a promising electrophoretic deposition strategy for dispersing 2D MXene nanosheets and boosting their pseudocapacitive performance, resulting in a high-capacitive electrochemical energy storage electrode.

8.
ChemSusChem ; 15(21): e202201473, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36102250

RESUMEN

Organic-inorganic hybrid perovskites have emerged in the last decade as promising semiconductors due to the excellent optoelectronic properties. This kind of perovskites exhibited respectable photocatalytic activities toward potential application in battery; however, the instability issue still hindered their practical use. Herein, a hybrid perovskite material, 4,4'-ethylenedipyridinium lead bromide [(4,4'-EDP)Pb2 Br6 ], was assembled onto the carbon materials to function as photoelectrode of the Li-oxygen battery. The strong cation-π interactions between the A-site cations enabled this hybrid perovskite to endure the cycling process as well as the exposure to battery electrolyte and oxygen. Benefitting from the photo-generated carriers of the photoelectrode under illumination, the formation/decomposition of the discharge product was accelerated, thus leading to a reduced overpotential from 1.3 V to an optimized 0.5 V compared to the Li-oxygen battery without illumination. The overpotential could be maintained lower than 0.9 V after cycling for 170 h. Furthermore, when exposed to the sunlight, the charging voltage was reduced by over 0.2 V. The intrinsic stability and strong light absorption of perovskites together with the optimized perovskite/carbon cathode interfaces contributed to the improved performance under different light sources without complex material design, which shed light on the exploration of organic-inorganic hybrid perovskites in Li-oxygen battery applications.

9.
ACS Appl Mater Interfaces ; 14(27): 30847-30856, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35759788

RESUMEN

Preparation of high-efficiency dual-functional catalysts remains the bottleneck for electrochemical water splitting. To prepare a non-precious metal catalyst with high activity and stability, here, we present a seaweed-like structure consisting of transition-metal sulfide nanoplates self-assembled on carbon nanotube sponge networks (SW-CoS@CNT). By adjusting the key parameters during synthesis (e.g., the loading amount and ratio of Co and S precursors), the microstructure can be tailored in a wide range, and sulfur defects can be introduced into the nanoplates by thermal annealing. The resulting SW-CoS@CNT serves as a freestanding dual-functional catalytic electrode, showing low overpotentials of 105 and 218 mV for the hydrogen evolution reaction and the oxygen evolution reaction, respectively, which are superior to most reported transition-metal-sulfide-based catalysts in alkaline solution. Rational design of this hierarchical biomimetic structure may be useful in developing high-performance electrochemical catalysts in renewable energy and environmental fields.

11.
Small ; 18(14): e2105226, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35182021

RESUMEN

Tailoring the structure of metal components and interaction with their anchored substrates is essential for improving the catalytic performance of supported metal catalysts; the ideal catalytic configuration, especially down to the range of atomic layers, clusters, and even single atoms, remains a subject under intensive study. Here, an Ir-on-MXene (Mo2 TiC2 Tx ) catalyst with controlled morphology changing from nanoparticles down to flattened atomic layers, and finally ultrathin layers and single atoms dispersed on MXene nanosheets at elevated temperature, is presented. The intermediate structure, consisting of mostly Ir atomic layers, shows the highest activity toward the hydrogen evolution reaction (HER) under industry-compatible alkaline conditions. In addition, the better HER activity of Ir atomic layers than that of single atoms suggests that the former serves as the main active sites. Detailed mechanism analysis reveals that the nanoparticle re-dispersion process and Ir atomic layers with a moderate interaction to the substrate associate with unconventional electron transfer from MXene to Ir, leading to suitable H* adsorption. The results indicate that the structural design is important for the development of highly efficient catalysts.


Asunto(s)
Iridio , Nanopartículas , Adsorción , Catálisis , Hidrógeno
12.
Nat Nanotechnol ; 17(3): 278-284, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35058655

RESUMEN

The assembly of single-walled carbon nanotubes (CNTs) into high-density horizontal arrays is strongly desired for practical applications, but challenges remain despite myriads of research efforts. Herein, we developed a non-destructive soft-lock drawing method to achieve ultraclean single-walled CNT arrays with a very high degree of alignment (angle standard deviation of ~0.03°). These arrays contained a large portion of nanometre-sized CNT bundles, yielding a high packing density (~400 µm-1) and high current carrying capacity (∼1.8 × 108 A cm-2). This alignment strategy can be generally extended to diverse substrates or sources of raw single-walled CNTs. Significantly, the assembled CNT bundles were used as nanometre electrical contacts of high-density monolayer molybdenum disulfide (MoS2) transistors, exhibiting high current density (~38 µA µm-1), low contact resistance (~1.6 kΩ µm), excellent device-to-device uniformity and highly reduced device areas (0.06 µm2 per device), demonstrating their potential for future electronic devices and advanced integration technologies.

13.
ACS Appl Mater Interfaces ; 13(46): 55600-55610, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34779615

RESUMEN

The development of flexible and wearable electronic devices has put an increasing demand on electrode systems with seamless connection and high compatibility with the main device, in order to accommodate complex deformation conditions and maintain stable performance. Here, we present a carbon nanotube-integrated electrode (CNTIE) by wet-pulling the ends of a carbon nanotube (CNT) film to form condensed thin fibers that resemble conventional conducting wire electrodes. A flexible strain sensor was constructed consisting of the middle CNT film as the main functional part and the CNTIE as self-derived electrodes, with inherent CNT connection between the two parts. The sensor can be transferred to versatile substrates (e.g., balloon surface) or encapsulated in thermoplastic polymers, exhibiting a large linear response range (up to 1000% in tensile strain), excellent durability and repeatability over 5000 cycles, and the ability to detect small- to large-degree human body motions. In addition, the strain sensor based on the CNTIE hybrid film (MXene/CNT and graphene/CNT) also shows superior linearity and stability at a strain range of 0-800%. Compared with the sensors using traditional silver wire electrodes and separately fabricated CNT fiber electrodes, our CNTIE plays an important role in achieving highly stable performance in the strain cycles. Our self-derived integrated electrodes provide a potential route to solve the incompatibility issues of conventional electrodes and to develop high-performance flexible and wearable systems based on CNTs and other nanomaterials.

14.
Small ; 17(26): e2100911, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34038614

RESUMEN

Compressible energy devices have received increasing attention with the rapid development of flexible electronics and wearable devices due to their size adaptability and functional stability. However, it is hard to simultaneously achieve satisfactory energy density and mechanical stability for electrodes. Here an open-porous dual network sponge (DNS) with two networks of highly conductive carbon nanotubes and Li+ -intercalating TiO2 -B nanowires is synthesized and employed as compressible lithium ion battery electrodes. All 1D components inside the DNS mutually penetrate with each other to form two physically distinct but functionally coupling networks, endowing DNS excellent compressibility and stability. A prototype compressible lithium-ion battery (C-LIB) is also demonstrated, in which the DNS exhibits a specific capacity of >238 mAh g-1 under static 50% strain, and further in situ measurements show that under 1000 times of cyclic strains, DNS can charge and discharge normally maintaining a high capacity of 240 mAh g-1 and exhibits robustness to fast strain rates up to 500% min-1 . The dual network structure can be extended to design high-performance compliant electrodes that are promising to serve in future compressible and deformable electronics and energy systems.


Asunto(s)
Litio , Nanotubos de Carbono , Suministros de Energía Eléctrica , Electrodos , Iones
15.
ACS Nano ; 15(5): 7946-7974, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33988980

RESUMEN

Carbon nanotube functional materials (CNTFMs) represent an important research field in transforming nanoscience and nanotechnology into practical applications, with potential impact in a wide realm of science, technology, and engineering. In this review, we combine the state-of-the-art research activities of CNTFMs with the application prospect, to highlight critical issues and identify future challenges. We focus on macroscopic long fibers, thin films, and bulk sponges which are typical CNTFMs in different dimensions with distinct characteristics, and also cover a variety of derived composite/hierarchical materials. Critical issues related to their structures, properties, and applications as robust conductive skeletons or high-performance flexible electrodes in mechanical and electronic devices, advanced energy conversion and storage systems, and environmental areas have been discussed specifically. Finally, possible solutions and directions are proposed for overcoming current obstacles and promoting future efforts in the field.

16.
Nanotechnology ; 32(28)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33761495

RESUMEN

The transition metal sulfides/oxides have been considered as promising anode materials for lithium ion batteries due to their high theoretical capacities but have suffered limits from the unsatisfactory electronic conductivity and limited lifespan. Here, FeS micro-flowers are synthesized by hydrothermal treatment and are wared and grafted into layer-by-layer carbon nanotubes (CNT). Subsequently, FeS@Fe2O3/CNT composite films are obtained by annealing, during which the FeS micro-flowers are partially oxidized to core-shell FeS@Fe2O3micro-flowers. The FeS@Fe2O3/CNT composite electrodes exhibited high reversible capacity of 1722.4 mAh g-1(at a current density of 0.2 A g-1after 100 cycles) and excellent cycling stability (545.1 mAh g-1at a current density of 2 A g-1after 600 cycles) as self-supporting anodes. The prominent electrochemical performances are attributed to the unique reciprocal overlap architecture. This structure serves as a cushion to buffer large volume expansion during discharge/charge cycles, and ameliorates electrical conductivity. Due to their good specific capacity and cycle stability, these FeS@Fe2O3/CNT films have high potential application value to be used as high-performance anodes for lithium-ion, lithium sulfur and flexible packaging batteries.

17.
Front Neurosci ; 15: 771980, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002602

RESUMEN

Implantable brain electrophysiology electrodes are valuable tools in both fundamental and applied neuroscience due to their ability to record neural activity with high spatiotemporal resolution from shallow and deep brain regions. Their use has been hindered, however, by the challenges in achieving chronically stable operations. Furthermore, implantable depth neural electrodes can only carry out limited data sampling within predefined anatomical regions, making it challenging to perform large-area brain mapping. Minimizing inflammatory responses and associated gliosis formation, and improving the durability and stability of the electrode insulation layers are critical to achieve long-term stable neural recording and stimulation. Combining electrophysiological measurements with simultaneous whole-brain imaging techniques, such as magnetic resonance imaging (MRI), provides a useful solution to alleviate the challenge in scalability of implantable depth electrodes. In recent years, various carbon-based materials have been used to fabricate flexible neural depth electrodes with reduced inflammatory responses and MRI-compatible electrodes, which allows structural and functional MRI mapping of the whole brain without obstructing any brain regions around the electrodes. Here, we conducted a systematic comparative evaluation on the electrochemical properties, mechanical properties, and MRI compatibility of different kinds of carbon-based fiber materials, including carbon nanotube fibers, graphene fibers, and carbon fibers. We also developed a strategy to improve the stability of the electrode insulation without sacrificing the flexibility of the implantable depth electrodes by sandwiching an inorganic barrier layer inside the polymer insulation film. These studies provide us with important insights into choosing the most suitable materials for next-generation implantable depth electrodes with unique capabilities for applications in both fundamental and translational neuroscience research.

18.
Adv Mater ; 32(48): e2006034, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33124756

RESUMEN

Designing high-performance and low-cost electrocatalysts is crucial for the electrochemical production of hydrogen. Dislocation-strained IrNi nanoparticles loaded on a carbon nanotube sponge (DSIrNi@CNTS) driven by unsteady thermal shock in an extreme environment are reported here as a highly efficient hydrogen evolution reaction (HER) catalyst. Experimental results demonstrate that numerous dislocations are kinetically trapped in self-assembled IrNi nanoparticles due to the ultrafast quenching and different atomic radii, which can induce strain effects into the IrNi nanoparticles. Such strain-induced high-energy surface structures arising from bulk defects (dislocations), are more likely to be resistant to surface restructuring during catalysis. The catalyst exhibits outstanding HER activity with only 17 mV overpotential to achieve 10 mA cm-2 in an alkaline electrolyte with fabulous stability, exceeding state-of-the-art Pt/C catalysts. These density functional theory results demonstrate that the electronic structure of as-synthesized IrNi nanostructure can be optimized by the strain effects induced by the dislocations, and the free energy of HER can be tuned toward the optimal region.

19.
ACS Appl Mater Interfaces ; 12(30): 33803-33809, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32614164

RESUMEN

Iron fluoride compounds offer an exciting pathway toward low-cost and high-capacity conversion-type lithium-ion battery (LIB) cathodes. However, due to the sluggishness of the electronic and ionic transport in iron fluorides, mass loadings of active materials in previous studies are typically less than 2.5 mg cm-2, which is too low for practical applications. Herein, we improve the charge transport in fluoride electrodes at both nano- and mesoscales to enable high-mass-loading fluoride electrodes. At the nanoscale, we prepare electronically conducting LixTiO2 composites with FeOF nanoparticles to reduce electron transport distance to 5-10 nm, which is one of the shortest among reports. At the mesoscale, we design a percolating three-dimensional porous carbon nanotube (CNT) network to enable fast pathways for both electrons and ions. The resulting spongelike material, FeOF/TiO2@CNT, substantially enhances the kinetics of the conversion reaction in FeOF, boosts extra lithium storage capacity, and reduces the voltage hysteresis. Steady cycling over 300 cycles is achieved at a high mass loading of 8.7 mg cm-2 (FeOF/TiO2) (1.74 mAh cm-2). Such areal capacity of lithium storage is significantly higher than previously reported iron fluorides-based structures, a significant step forward toward the development of low-cost metal fluoride electrodes.

20.
ACS Appl Mater Interfaces ; 12(26): 29778-29786, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32496756

RESUMEN

Recently, room-temperature flexible gas sensors have been widely studied because they can operate without being heated and create low-cost, low-power-consumption devices with long-term stability. Here, by designing the active material composition and structure, we report an electrospun carbon nanofiber (CNF) network grafted by two-dimensional MoS2 nanosheets and embedded CoS2 nanoparticles, which serves as a flexible gas sensor for various toxic or hazardous gases working at room temperature. In particular, the CNFs/CoS2/MoS2 hybrid films exhibit very high selectivity toward NO over other gases including NO2 and CH4, with selectivity coefficients (|SNO/SNO2| and |SNO/SCH4|) as high as 43 and 42 (defined as the ratio of responses between two gases). The sensor shows a linear relationship in the gas concentration range of 1-100 ppm and a stable response during repeated bending. Theoretical calculations suggest that MoS2 can be selectively n-doped by NO, while CoS2 can effectively capture NO molecules, leading to enhanced selectivity and sensitivity. Our large-area flexible sensors made by synergistic design have potential applications in biological and environmental areas for low-cost, selective detection of toxic or targeted gases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...