Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(13): 6899-6913, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37246715

RESUMEN

Diphthamide (DPH), a conserved amino acid modification on eukaryotic translation elongation factor eEF2, is synthesized via a complex, multi-enzyme pathway. While DPH is non-essential for cell viability and its function has not been resolved, diphtheria and other bacterial toxins ADP-ribosylate DPH to inhibit translation. Characterizing Saccharomyces cerevisiae mutants that lack DPH or show synthetic growth defects in the absence of DPH, we show that loss of DPH increases resistance to the fungal translation inhibitor sordarin and increases -1 ribosomal frameshifting at non-programmed sites during normal translation elongation and at viral programmed frameshifting sites. Ribosome profiling of yeast and mammalian cells lacking DPH reveals increased ribosomal drop-off during elongation, and removal of out-of-frame stop codons restores ribosomal processivity on the ultralong yeast MDN1 mRNA. Finally, we show that ADP-ribosylation of DPH impairs the productive binding of eEF2 to elongating ribosomes. Our results reveal that loss of DPH impairs the fidelity of translocation during translation elongation resulting in increased rates of ribosomal frameshifting throughout elongation and leading to premature termination at out-of-frame stop codons. We propose that the costly, yet non-essential, DPH modification has been conserved through evolution to maintain translational fidelity despite being a target for inactivation by bacterial toxins.


Asunto(s)
Sistema de Lectura Ribosómico , Factor 2 de Elongación Peptídica , Saccharomyces cerevisiae , Animales , Toxinas Bacterianas/metabolismo , Codón de Terminación/metabolismo , Mamíferos/genética , Factor 2 de Elongación Peptídica/química , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217614

RESUMEN

Translation start site selection in eukaryotes is influenced by context nucleotides flanking the AUG codon and by levels of the eukaryotic translation initiation factors eIF1 and eIF5. In a search of mammalian genes, we identified five homeobox (Hox) gene paralogs initiated by AUG codons in conserved suboptimal context as well as 13 Hox genes that contain evolutionarily conserved upstream open reading frames (uORFs) that initiate at AUG codons in poor sequence context. An analysis of published cap analysis of gene expression sequencing (CAGE-seq) data and generated CAGE-seq data for messenger RNAs (mRNAs) from mouse somites revealed that the 5' leaders of Hox mRNAs of interest contain conserved uORFs, are generally much shorter than reported, and lack previously proposed internal ribosome entry site elements. We show that the conserved uORFs inhibit Hox reporter expression and that altering the stringency of start codon selection by overexpressing eIF1 or eIF5 modulates the expression of Hox reporters. We also show that modifying ribosome homeostasis by depleting a large ribosomal subunit protein or treating cells with sublethal concentrations of puromycin leads to lower stringency of start codon selection. Thus, altering global translation can confer gene-specific effects through altered start codon selection stringency.


Asunto(s)
Codón Iniciador , Evolución Molecular , Genes Homeobox , Biosíntesis de Proteínas , ARN Mensajero/genética , Animales , Ratones , Sistemas de Lectura Abierta
3.
Mol Cell ; 81(19): 3904-3918.e6, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34375581

RESUMEN

Polyamines, small organic polycations, are essential for cell viability, and their physiological levels are homeostatically maintained by post-transcriptional regulation of key biosynthetic enzymes. In addition to de novo synthesis, cells can also take up polyamines; however, identifying cellular polyamine transporters has been challenging. Here we show that the S. cerevisiae HOL1 mRNA is under translational control by polyamines, and we reveal that the encoded membrane transporter Hol1 is a high-affinity polyamine transporter and is required for yeast growth under limiting polyamine conditions. Moreover, we show that polyamine inhibition of the translation factor eIF5A impairs translation termination at a Pro-Ser-stop motif in a conserved upstream open reading frame on the HOL1 mRNA to repress Hol1 synthesis under conditions of elevated polyamines. Our findings reveal that polyamine transport, like polyamine biosynthesis, is under translational autoregulation by polyamines in yeast, highlighting the extensive control cells impose on polyamine levels.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Poliaminas/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Sistemas de Lectura Abierta , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factor 5A Eucariótico de Iniciación de Traducción
4.
Mol Cell ; 70(2): 254-264.e6, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677493

RESUMEN

Translation initiation is typically restricted to AUG codons, and scanning eukaryotic ribosomes inefficiently recognize near-cognate codons. We show that queuing of scanning ribosomes behind a paused elongating ribosome promotes initiation at upstream weak start sites. Ribosomal profiling reveals polyamine-dependent pausing of elongating ribosomes on a conserved Pro-Pro-Trp (PPW) motif in an inhibitory non-AUG-initiated upstream conserved coding region (uCC) of the antizyme inhibitor 1 (AZIN1) mRNA, encoding a regulator of cellular polyamine synthesis. Mutation of the PPW motif impairs initiation at the uCC's upstream near-cognate AUU start site and derepresses AZIN1 synthesis, whereas substitution of alternate elongation pause sequences restores uCC translation. Impairing ribosome loading reduces uCC translation and paradoxically derepresses AZIN1 synthesis. Finally, we identify the translation factor eIF5A as a sensor and effector for polyamine control of uCC translation. We propose that stalling of elongating ribosomes triggers queuing of scanning ribosomes and promotes initiation by positioning a ribosome near the start codon.


Asunto(s)
Proteínas Portadoras/biosíntesis , Extensión de la Cadena Peptídica de Translación , Iniciación de la Cadena Peptídica Traduccional , Poliaminas/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/genética , Línea Celular Tumoral , Codón Iniciador , Secuencia Conservada , Células HEK293 , Humanos , Ratones , Sistemas de Lectura Abierta , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
5.
Proc Natl Acad Sci U S A ; 112(32): E4364-73, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26216977

RESUMEN

Phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by eIF2α family kinases is a conserved mechanism to limit protein synthesis under specific stress conditions. The baculovirus-encoded protein PK2 inhibits eIF2α family kinases in vivo, thereby increasing viral fitness. However, the precise mechanism by which PK2 inhibits eIF2α kinase function remains an enigma. Here, we probed the mechanism by which PK2 inhibits the model eIF2α kinase human RNA-dependent protein kinase (PKR) as well as native insect eIF2α kinases. Although PK2 structurally mimics the C-lobe of a protein kinase domain and possesses the required docking infrastructure to bind eIF2α, we show that PK2 directly binds the kinase domain of PKR (PKR(KD)) but not eIF2α. The PKR(KD)-PK2 interaction requires a 22-residue N-terminal extension preceding the globular PK2 body that we term the "eIF2α kinase C-lobe mimic" (EKCM) domain. The functional insufficiency of the N-terminal extension of PK2 implicates a role for the adjacent EKCM domain in binding and inhibiting PKR. Using a genetic screen in yeast, we isolated PK2-activating mutations that cluster to a surface of the EKCM domain that in bona fide protein kinases forms the catalytic cleft through sandwiching interactions with a kinase N-lobe. Interaction assays revealed that PK2 associates with the N- but not the C-lobe of PKR(KD). We propose an inhibitory model whereby PK2 engages the N-lobe of an eIF2α kinase domain to create a nonfunctional pseudokinase domain complex, possibly through a lobe-swapping mechanism. Finally, we show that PK2 enhances baculovirus fitness in insect hosts by targeting the endogenous insect heme-regulated inhibitor (HRI)-like eIF2α kinase.


Asunto(s)
Imitación Molecular , Proteínas Virales/química , Proteínas Virales/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Baculoviridae/fisiología , Bombyx/virología , Línea Celular , Análisis Mutacional de ADN , Modelos Moleculares , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
6.
Proc Natl Acad Sci U S A ; 105(44): 16894-9, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18971339

RESUMEN

As part of the mammalian cell innate immune response, the double-stranded RNA activated protein kinase PKR phosphorylates the translation initiation factor eIF2alpha to inhibit protein synthesis and thus block viral replication. Poxviruses including vaccinia and smallpox viruses express PKR inhibitors such as the vaccinia virus K3L protein that resembles the N-terminal substrate-targeting domain of eIF2alpha. Whereas high-level expression of human PKR was toxic in yeast, this growth inhibition was suppressed by coexpression of the K3L protein. We used this yeast assay to screen for PKR mutants that are resistant to K3L inhibition, and we identified 12 mutations mapping to the C-terminal lobe of the PKR kinase domain. The PKR mutations specifically conferred resistance to the K3L protein both in yeast and in vitro. Consistently, the PKR-D486V mutation led to nearly a 15-fold decrease in K3L binding affinity yet did not impair eIF2alpha phosphorylation. Our results support the identification of the eIF2alpha-binding site on an extensive face of the C-terminal lobe of the kinase domain, and they indicate that subtle changes to the PKR kinase domain can drastically impact pseudosubstrate inhibition while leaving substrate phosphorylation intact. We propose that these paradoxical effects of the PKR mutations on pseudosubstrate vs. substrate interactions reflect differences between the rigid K3L protein and the plastic nature of eIF2alpha around the Ser-51 phosphorylation site.


Asunto(s)
Proteínas Virales/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores , Sitios de Unión , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Modelos Moleculares , Mutación , Fosforilación , Poxviridae/metabolismo , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Proteínas Virales/química , eIF-2 Quinasa/química , eIF-2 Quinasa/genética
7.
Mol Cell Biol ; 28(22): 6877-88, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18794367

RESUMEN

Selection of the AUG start codon for translation in eukaryotes is governed by codon-anticodon interactions between the initiator Met-tRNA(i)(Met) and the mRNA. Translation initiation factor 2 (eIF2) binds Met-tRNA(i)(Met) to the 40S ribosomal subunit, and previous studies identified Sui(-) mutations in eIF2 that enhanced initiation from a noncanonical UUG codon, presumably by impairing Met-tRNA(i)(Met) binding. Consistently, an eIF2gamma-N135D GTP-binding domain mutation impairs Met-tRNA(i)(Met) binding and causes a Sui(-) phenotype. Intragenic A208V and A382V suppressor mutations restore Met-tRNA(i)(Met) binding affinity and cell growth; however, only A208V suppresses the Sui(-) phenotype associated with the eIF2gamma-N135D mutation. An eIF2gamma-A219T mutation impairs Met-tRNA(i)(Met) binding but unexpectedly enhances the fidelity of initiation, suppressing the Sui(-) phenotype associated with the eIF2gamma-N135D,A382V mutant. Overexpression of eIF1, which is thought to monitor codon-anticodon interactions during translation initiation, likewise suppresses the Sui(-) phenotype of the eIF2gamma mutants. We propose that structural alterations in eIF2gamma subtly alter the conformation of Met-tRNA(i)(Met) on the 40S subunit and thereby affect the fidelity of start codon recognition independent of Met-tRNA(i)(Met) binding affinity.


Asunto(s)
Codón Iniciador/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Mutación , ARN de Transferencia de Metionina/metabolismo , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Codón Iniciador/química , Codón Iniciador/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor 2 Eucariótico de Iniciación/química , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Fenotipo , Estructura Terciaria de Proteína , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Cell ; 132(1): 89-100, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-18191223

RESUMEN

Ire1 is an ancient transmembrane sensor of ER stress with dual protein kinase and ribonuclease activities. In response to ER stress, Ire1 catalyzes the splicing of target mRNAs in a spliceosome-independent manner. We have determined the crystal structure of the dual catalytic region of Ire1at 2.4 A resolution, revealing the fusion of a domain, which we term the KEN domain, to the protein kinase domain. Dimerization of the kinase domain composes a large catalytic surface on the KEN domain which carries out ribonuclease function. We further show that signal induced trans-autophosphorylation of the kinase domain permits unfettered binding of nucleotide, which in turn promotes dimerization to compose the ribonuclease active site. Comparison of Ire1 to a topologically disparate ribonuclease reveals the convergent evolution of their catalytic mechanism. These findings provide a basis for understanding the mechanism of action of RNaseL and other pseudokinases, which represent 10% of the human kinome.


Asunto(s)
Empalme Alternativo/genética , Glicoproteínas de Membrana/química , Fosfotransferasas/química , Proteínas Serina-Treonina Quinasas/química , Ribonucleasas/química , Proteínas de Saccharomyces cerevisiae/química , Levaduras/química , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Dominio Catalítico/fisiología , Cristalografía por Rayos X , Dimerización , Retículo Endoplásmico/metabolismo , Evolución Molecular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nucleótidos/química , Nucleótidos/metabolismo , Estrés Oxidativo/fisiología , Fosforilación , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Unión Proteica/fisiología , Conformación Proteica , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Levaduras/genética , Levaduras/metabolismo
9.
J Biol Chem ; 282(9): 6653-60, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17202131

RESUMEN

The protein kinases PKR, GCN2, and PERK phosphorylate translation initiation factor eIF2alpha to regulate general and genespecific protein synthesis under various cellular stress conditions. Recent x-ray crystallographic structures of PKR and GCN2 revealed distinct dimeric configurations of the kinase domains. Whereas PKR kinase domains dimerized in a back-to-back and parallel orientation, the GCN2 kinase domains displayed an antiparallel orientation. The dimerization interfaces on PKR and GCN2 were localized to overlapping surfaces on the N-terminal lobes of the kinase domains but utilized different intermolecular contacts. A key feature of the PKR dimerization interface is a salt bridge interaction between Arg(262) from one protomer and Asp(266) from the second protomer. Interestingly, these two residues are conserved in all eIF2alpha kinases, although in the GCN2 structure, the two residues are too remote to interact. To test the importance of this potential salt bridge interaction in PKR, GCN2, and PERK, the residues constituting the salt bridge were mutated either independently or together to residues with the opposite charge. Single mutations of the Asp (or Glu) and Arg residues blocked kinase function both in yeast cells and in vitro. However, for all three kinases, the double mutation designed to restore the salt bridge interaction with opposite polarity resulted in a functional kinase. Thus, the salt bridge interaction and dimer interface observed in the PKR structure is critical for the activity of all three eIF2alpha kinases. These results are consistent with the notion that the PKR structure represents the active state of the eIF2alpha kinase domain, whereas the GCN2 structure may represent an inactive state of the kinase.


Asunto(s)
Proteínas Quinasas/química , Animales , Arginina , Asparagina , Proteínas de Caenorhabditis elegans/química , Dimerización , Humanos , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Electricidad Estática , eIF-2 Quinasa/química
10.
Cell ; 122(6): 901-13, 2005 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-16179259

RESUMEN

The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , eIF-2 Quinasa/metabolismo , Catálisis , Dimerización , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/genética , Mutagénesis Sitio-Dirigida , Fosforilación , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Saccharomyces cerevisiae/metabolismo , eIF-2 Quinasa/química , eIF-2 Quinasa/genética
11.
Mol Cell Biol ; 25(8): 3063-75, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15798194

RESUMEN

Four stress-responsive protein kinases, including GCN2 and PKR, phosphorylate eukaryotic translation initiation factor 2alpha (eIF2alpha) on Ser51 to regulate general and gene-specific protein synthesis. Phosphorylated eIF2 is an inhibitor of its guanine nucleotide exchange factor, eIF2B. Mutations that block translational regulation were isolated throughout the N-terminal OB-fold domain in Saccharomyces cerevisiae eIF2alpha, including those at residues flanking Ser51 and around 20 A away in the conserved motif K79GYID83. Any mutation at Glu49 or Asp83 blocked translational regulation; however, only a subset of these mutations impaired Ser51 phosphorylation. Substitution of Ala for Asp83 eliminated phosphorylation by GCN2 and PKR both in vivo and in vitro, establishing the critical contributions of remote residues to kinase-substrate recognition. In contrast, mutations that blocked translational regulation but not Ser51 phosphorylation impaired the binding of eIF2B to phosphorylated eIF2alpha. Thus, two structurally distinct effectors of eIF2 function, eIF2alpha kinases and eIF2B, have evolved to recognize the same surface and overlapping determinants on eIF2alpha.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Proteínas Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , eIF-2 Quinasa/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia Conservada , Análisis Mutacional de ADN , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/fisiología , Datos de Secuencia Molecular , Mutación/genética , Iniciación de la Cadena Peptídica Traduccional/fisiología , Fosforilación , Conformación Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Serina/genética , Serina/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
12.
J Biol Chem ; 279(11): 10634-42, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-14688270

RESUMEN

The x-ray structure of the gamma-subunit of the heterotrimeric translation initiation factor eIF2 has been determined to 2.4-A resolution. eIF2 is a GTPase that delivers the initiator Met-tRNA to the P site on the small ribosomal subunit during a rate-limiting initiation step in translation. The structure of eIF2gamma closely resembles that of EF1A.GTP, consisting of an N-terminal G domain followed by two beta-barrels arranged in a closed configuration with domain II packed against the G domain in the vicinity of the Switch regions. The G domain of eIF2gamma has an unusual zinc ribbon motif, not previously found in other GTPases. Structure-based site-directed mutagenesis was used to identify two adjacent features on the surface of eIF2gamma that bind the alpha-subunit and Met-tRNA(i)(Met), respectively. These structural, biochemical, and genetic results provide new insights into eIF2 ternary complex assembly.


Asunto(s)
Factor 2 Eucariótico de Iniciación/química , ARN de Transferencia/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Archaea , Cristalografía por Rayos X , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Methanococcus/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , ARN de Transferencia de Metionina/metabolismo , Homología de Secuencia de Aminoácido
13.
Proc Natl Acad Sci U S A ; 99(26): 16689-94, 2002 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-12471154

RESUMEN

Initiation factors IF2 in bacteria and eIF2 in eukaryotes are GTPases that bind Met-tRNA(i)(Met) to the small ribosomal subunit. eIF5B, the eukaryotic ortholog of IF2, is a GTPase that promotes ribosomal subunit joining. Here we show that eIF5B GTPase activity is required for protein synthesis. Mutation of the conserved Asp-759 in human eIF5B GTP-binding domain to Asn converts eIF5B to an XTPase and introduces an XTP requirement for subunit joining and translation initiation. Thus, in contrast to bacteria where the single GTPase IF2 is sufficient to catalyze translation initiation, eukaryotic cells require hydrolysis of GTP by both eIF2 and eIF5B to complete translation initiation.


Asunto(s)
Proteínas de Unión al ADN , Factores Eucarióticos de Iniciación/metabolismo , Guanosina Trifosfato/metabolismo , Biosíntesis de Proteínas , Catálisis , División Celular , Codón , Secuencia Conservada , Factores Eucarióticos de Iniciación/química , Mutación , Sistemas de Lectura Abierta , Proteínas Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...