Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38613030

RESUMEN

Black tea (BT), the most consumed tea worldwide, can alleviate hyperlipidemia which is a serious threat to human health. However, the quality of summer BT is poor. It was improved by microbial fermentation in a previous study, but whether it affects hypolipidemic activity is unknown. Therefore, we compared the hypolipidemic activity of BT and microbially fermented black tea (EFT). The results demonstrated that BT inhibited weight gain and improved lipid and total bile acid (TBA) levels, and microbial fermentation reinforced this activity. Mechanistically, both BT and EFT mediate bile acid circulation to relieve hyperlipidemia. In addition, BT and EFT improve dyslipidemia by modifying the gut microbiota. Specifically, the increase in Lactobacillus johnsonii by BT, and the increase in Mucispirillum and Colidextribacter by EFT may also be potential causes for alleviation of hyperlipidemia. In summary, we demonstrated that microbial fermentation strengthened the hypolipidemic activity of BT and increased the added value of BT.


Asunto(s)
Camellia sinensis , Hiperlipidemias , Humanos , , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/prevención & control , Fermentación , Ácidos y Sales Biliares
2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542498

RESUMEN

Tea grey blight disease is one of the most destructive diseases that infects tea and is caused by the pathogen Pestalotiopsis theae (Sawada) Steyaert. L-theanine is a unique non-protein amino acid of the tea plant. Different concentrations of L-theanine exhibit significant inhibitory effects on the growth and sporulation ability of the pathogen causing tea grey blight disease. To understand the effect mechanism of L-theanine on P. theae, transcriptome profiling was performed on the pathogenic mycelium treated with three different concentrations of L-theanine: no L-theanine treatment (TH0), 20 mg/mL theanine treatment (TH2), and 40 mg/mL theanine treatment (TH4). The colony growths were significantly lower in the treatment with L-theanine than those without L-theanine. The strain cultured with a high concentration of L-theanine produced no spores or only a few spores. In total, 2344, 3263, and 1158 differentially expressed genes (DEGs) were detected by RNA-sequencing in the three comparisons, Th2 vs. Th0, Th4 vs. Th0, and Th4 vs. Th2, respectively. All DEGs were categorized into 24 distinct clusters. According to GO analysis, low concentrations of L-theanine primarily affected molecular functions, while high concentrations of L-theanine predominantly affected biological processes including external encapsulating structure organization, cell wall organization or biogenesis, and cellular amino acid metabolic process. Based on KEGG, the DEGs of Th2 vs. Th0 were primarily involved in pentose and glucuronate interconversions, histidine metabolism, and tryptophan metabolism. The DEGs of Th4 vs. Th0 were mainly involved in starch and sucrose metabolism, amino sugar, and nucleotide sugar metabolism. This study indicated that L-theanine has a significant impact on the growth and sporulation of the pathogen of tea grey blight disease and mainly affects amino acid metabolism, carbohydrate metabolism, and cellular structure-related biosynthesis processes of pathogenic fungi. This work provides insights into the direct control effect of L-theanine on pathogenic growth and also reveals the molecular mechanisms of inhibition of L-theanine to P. theae.


Asunto(s)
Ascomicetos , Camellia sinensis , Transcriptoma , Glutamatos/farmacología , Camellia sinensis/metabolismo , Hojas de la Planta/metabolismo , Té/química
3.
Foods ; 12(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37761123

RESUMEN

Tea is the most popular and widely consumed beverage worldwide, especially black tea. Summer tea has a bitter and astringent taste and low aroma compared to spring tea due to the higher content of polyphenols and lower content of amino acids. Microbial fermentation is routinely used to improve the flavor of various foods. This study analyzed the relationship between the quality of black tea, metabolic characteristics, and microbial communities after microbial stuck fermentation in summer black tea. Stuck fermentation decreased the bitterness, astringency sourness, and freshness, and increased the sweetness, mellowness, and smoothness of summer black tea. The aroma also changed from sweet and floral to fungal, with a significant improvement in overall quality. Metabolomics analysis revealed significant changes in 551 non-volatile and 345 volatile metabolites after fermentation. The contents of compounds with bitter and astringent taste were decreased. Sweet flavor saccharides and aromatic lipids, and acetophenone and isophorone that impart fungal aroma showed a marked increase. These changes are the result of microbial activities, especially the secretion of extracellular enzymes. Aspergillus, Pullululanibacillus, and Bacillus contribute to the reduction of bitterness and astringency in summer black teas after stuck fermentation, and Paenibacillus and Basidiomycota_gen_Incertae_sedis contribute positively to sweetness. In addition, Aspergillus was associated with the formation of fungal aroma. In summary, our research will provide a suitable method for the improvement of tea quality and utilization of summer tea, as well as provide a reference for innovation and improvement in the food industry.

4.
Biomed Pharmacother ; 158: 114136, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36535201

RESUMEN

The gut-liver axis is a bidirectional relationship between the gut with its microbiota and the hepatic. Ulcerative colitis (UC) disrupts the intestinal barrier and influx of intestinal microorganisms and their products into the liver, which trigger liver injury. Tea consumption is associated with a low incidence of UC in Asian countries. In this study, we revealed the mechanisms of six types of tea water extracts (TWEs) obtained from the leaves of Camellia sinensis on the dextran sodium sulfate (DSS)-induced colitis and liver injury in mice. The TWEs significantly restored mucin production and increased the expression levels of tight junction (TJ) proteins such as zonula occludens-1 (ZO-1), occluding, and claudin-1. In addition, TWEs also reduced the levels of pro-inflammatory cytokines in the colon and liver tissue by inactivating the NF-κB/NLRP3. Moreover, TEWs treatment promoted the integrity of the intestinal barrier to reduce serum lipopolysaccharide (LPS) levels, thereby reducing liver injury caused by intestinal microbial translocation and LPS induction. Analysis of 16 S rRNA microbial sequencing revealed that tea water extracts (TWEs) restored the DSS-induced gut dysbiosis. Interestingly, our results showed that the degree of fermentation of tea leaves was negatively associated with the alleviation of DSS-induced colitis effects, and there was also an overall negative trend with colitis-induced liver injury, except for black tea. Taken together, tea consumption mitigated DSS-induced colitis and liver injury in mice via inhibiting the TLR4/NF-κB/NLRP3 inflammasome pathway.


Asunto(s)
Camellia sinensis , Colitis Ulcerosa , Colitis , Animales , Ratones , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Lipopolisacáridos , Hígado/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , , Proteínas de Uniones Estrechas/metabolismo , Receptor Toll-Like 4
5.
Nutrients ; 14(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364943

RESUMEN

Catechins are key functional components in tea and have many health benefits, including relieving diabetes. Glucose is necessary for maintaining life. However, when the glucose in the serum exceeds the threshold, it will lead to hyperglycemia. Hyperglycemia is mainly caused by insufficient insulin secretion or insulin resistance. Persistent hyperglycemia can cause various disorders, including retinopathy, nephropathy, neurodegenerative diseases, cardiovascular disease, and diabetes. In this paper, we summarize the research on the underlying mechanisms of catechins in regulating diabetes and elaborate on the mechanisms of catechins in alleviating hyperglycemia by improving insulin resistance, alleviating oxidative stress, regulating mitochondrial function, alleviating endoplasmic reticulum stress, producing anti-inflammatory effects, reducing blood sugar source, and regulating intestinal function. This review will provide scientific direction for future research on catechin alleviating diabetes.


Asunto(s)
Catequina , Diabetes Mellitus , Hiperglucemia , Resistencia a la Insulina , Humanos , Catequina/farmacología , Catequina/uso terapéutico , Glucosa ,
6.
Nutrients ; 14(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35807846

RESUMEN

Hyperuricemia (HUA) is a metabolic disease that threatens human health. Tea is a healthy beverage with an abundance of benefits. This study revealed the uric acid-lowering efficacy of six types of tea water extracts (TWEs) on HUA in mice. The results revealed that under the intervention of TWEs, the expression of XDH, a key enzyme that produces uric acid, was significantly downregulated in the liver. TWE treatment significantly upregulated the expression of uric acid secretion transporters ABCG2, OAT1, and OAT3, and downregulated the expression of uric acid reabsorption transporter URAT1 in the kidney. Furthermore, HUA-induced oxidative stress could be alleviated by upregulating the Nrf2/HO-1 pathway. The intervention of TWEs also significantly upregulated the expression of the intestinal ABCG2 protein. On the other hand, TWE intervention could significantly upregulate the expression of intestinal ABCG2 and alleviate HUA by modulating the gut microbiota. Taken together, tea can comprehensively regulate uric acid metabolism in HUA mice. Interestingly, we found that the degree of fermentation of tea was negatively correlated with the uric acid-lowering effect. The current study indicated that tea consumption may have a mitigating effect on the HUA population and provided a basis for further research on the efficacy of tea on the dosage and mechanism of uric acid-lowering effects in humans.


Asunto(s)
Camellia sinensis , Microbioma Gastrointestinal , Hiperuricemia , Animales , Hiperuricemia/tratamiento farmacológico , Redes y Vías Metabólicas , Ratones , , Ácido Úrico/metabolismo
7.
Food Nutr Res ; 662022.
Artículo en Inglés | MEDLINE | ID: mdl-35844955

RESUMEN

Background: The health benefits of tea are as diverse including the reduction of uric acid levels. Xanthine oxidase is the most directly mediated enzyme in the production of uric acid. Objective: To explore the inhibitory effects of different teas and its main bioactive components on the production of uric acid. Design: Experimental study. The experiments were conducted in vitro using human immortalized normal liver cell line HL-7702 (L-02). Results: The inhibition of the xanthine oxidase activities and the expression level of xanthine dehydrogenase mRNA stimulated in the hyperuric hepatocyte cell model showed that the unfermented green tea and th1e lightly fermented yellow tea, white tea, and oolong tea significantly stronger than the highly fermented black tea and dark tea. The main bioactive compound, gallic acid, showed the strongest inhibitory effect on uric acid production, followed by tea polyphenols and theaflavins. Discussion: All teas exhibited significant inhibition of xanthine oxidase activities, and the degree of fermentation of tea may be inversely proportional to its ability to inhibit the production of uric acid. Compared with tea polyphenols rich in tea, gallic acid may be a more potential uric acid-lowering component. Conclusion: In this article, we first compared the effects of six traditional Chinese tea made from a single variety in stabilizing the synthesis of uric acid and found that the lighter the fermentation, the greater the potential for inhibiting the production of uric acid. Furthermore, we analyzed the inhibitory effects of its main biochemical active ingredients and found that the inhibitory effects of polyphenols rich in lightly fermented tea were significantly stronger than caffeine rich in highly fermented tea. Our findings will be helpful for people to choose a proper tea for alleviating hyperuricemia and provide a scientific basis for uric acid-lowering tea processing.

8.
Nutrients ; 14(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35267945

RESUMEN

Liver injury is a life-threatening condition that is usually caused by excessive alcohol consumption, improperdiet, and stressful lifestyle and can even progress to liver cancer. Tea is a popular beverage with proven health benefits and is known to exert a protective effect on the liver, intestines, and stomach. In this study, we analyzed the therapeutic effects of six kinds of tea on carbon tetrachloride (CCl4)-induced liver injury in a mouse model. The mice were injected with 10 mL/kg 5% CCl4 to induce liver injury and then given oral gavage of green tea, yellow tea, oolong tea, white tea, black tea, and dark tea, respectively. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured, and the expression levels of inflammation and oxidative stress-related proteins in the liver tissues were quantified. All six kinds of tea partly reduced the liver index, restored the size of the enlarged liver in the CCl4 model, and decreased the serum levels of ALT and AST. Furthermore, the highly fermented dark tea significantly reduced the expression levels of NF-κB and the downstream inflammatory factors, whereas the unfermented green tea inhibited oxidative stress by activating the antioxidant Nrf2 pathway. Taken together, tea can protect against liver inflammation, and unfermented tea can improve antioxidant levels. Further studies are needed on the bioactive components of tea to develop drugs against liver injury.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Animales , China , Ratones , Ratones Endogámicos C57BL ,
9.
Front Plant Sci ; 12: 782220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046974

RESUMEN

The R2R3-MYB transcription factor (TF) family regulates metabolism of phenylpropanoids in various plant lineages. Species-expanded or specific MYB TFs may regulate species-specific metabolite biosynthesis including phenylpropanoid-derived bioactive products. Camellia sinensis produces an abundance of specialized metabolites, which makes it an excellent model for digging into the genetic regulation of plant-specific metabolite biosynthesis. The most abundant health-promoting metabolites in tea are galloylated catechins, and the most bioactive of the galloylated catechins, epigallocatechin gallate (EGCG), is specifically relative abundant in C. sinensis. However, the transcriptional regulation of galloylated catechin biosynthesis remains elusive. This study mined the R2R3-MYB TFs associated with galloylated catechin biosynthesis in C. sinensis. A total of 118 R2R3-MYB proteins, classified into 38 subgroups, were identified. R2R3-MYB subgroups specific to or expanded in C. sinensis were hypothesized to be essential to evolutionary diversification of tea-specialized metabolites. Notably, nine of these R2R3-MYB genes were expressed preferentially in apical buds (ABs) and young leaves, exactly where galloylated catechins accumulate. Three putative R2R3-MYB genes displayed strong correlation with key galloylated catechin biosynthesis genes, suggesting a role in regulating biosynthesis of epicatechin gallate (ECG) and EGCG. Overall, this study paves the way to reveal the transcriptional regulation of galloylated catechins in C. sinensis.

10.
Hortic Res ; 7(1): 162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33082969

RESUMEN

Plant biosynthesis involves numerous specialized metabolites with diverse chemical natures and biological activities. The biosynthesis of metabolites often exclusively occurs in response to tissue-specific combinatorial developmental cues that are controlled at the transcriptional level. Capsaicinoids are a group of specialized metabolites that confer a pungent flavor to pepper fruits. Capsaicinoid biosynthesis occurs in the fruit placenta and combines its developmental cues. Although the capsaicinoid biosynthetic pathway has been largely characterized, the regulatory mechanisms that control capsaicinoid metabolism have not been fully elucidated. In this study, we combined fruit placenta transcriptome data with weighted gene coexpression network analysis (WGCNA) to generate coexpression networks. A capsaicinoid-related gene module was identified in which the MYB transcription factor CaMYB48 plays a critical role in regulating capsaicinoid in pepper. Capsaicinoid biosynthetic gene (CBG) and CaMYB48 expression primarily occurs in the placenta and is consistent with capsaicinoid biosynthesis. CaMYB48 encodes a nucleus-localized protein that primarily functions as a transcriptional activator through its C-terminal activation motif. CaMYB48 regulates capsaicinoid biosynthesis by directly regulating the expression of CBGs, including AT3a and KasIa. Taken together, the results of this study indicate ways to generate robust networks optimized for the mining of CBG-related regulators, establishing a foundation for future research elucidating capsaicinoid regulation.

11.
Mini Rev Med Chem ; 20(18): 1857-1866, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32682376

RESUMEN

Uric acid is the end product of purine metabolism in humans. High uric acid levels form sodium urate crystals that trigger biological processes, which lead to the development of several diseases, including diabetes, hyperuricemia, gout, inflammatory disease, kidney disease, cardiovascular disease and hypertension. Catechins have been suggested to be beneficial for the regulation of uric acid metabolic disorders due to their powerful antioxidant and anti-inflammatory properties. To identify an effective and safe natural substance that can decrease levels of serum uric acid to improve uric acid metabolism disorders. A search was performed on PubMed, Web of Science and Google Scholar to identify comprehensive studies that presented summarized data on the use of catechins in lowering uric acid levels in diseases. This review details the role of catechins in inhibiting the activity of xanthine oxidase to decrease uric acid overproduction in the liver and in regulating expressions of uric acid transporters, URAT1, OAT1, OAT3, ABCG2 and GLUT9, to balance levels of uric acid secretion and reabsorption through the kidney and intestine. Additionally, Catechins were also found to prevent monosodium urate-induced inflammatory reactions. In vivo, catechins can be used to decrease high uric acid levels that result from hyperuricemia and related diseases. Catechins can be used to maintain the balance of uric acid metabolism.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Catequina/farmacología , Enfermedades Metabólicas/tratamiento farmacológico , Ácido Úrico/metabolismo , Antiinflamatorios no Esteroideos/química , Antioxidantes/química , Catequina/química , Humanos , Enfermedades Metabólicas/metabolismo
12.
Food Funct ; 10(4): 2061-2074, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30907897

RESUMEN

A high-fat diet results in obesity because of white fat accumulation. Although tea extracts alleviate lipid metabolism disorders and decrease white fat accumulation, the mechanisms underlying the therapeutic actions of different types of Chinese tea are unclear. We established a murine model of obesity by feeding mice with a high-fat diet (HFD) and treating them with atorvastatin (positive control) or water extracts (WEATs) of different tea types. The food and water intake, body weight gain, white fat accumulation, and triglyceride (TG) and total cholesterol (TC) levels were evaluated to assess the effects of the WEATs on obesity. The levels of the lipid metabolism enzymes p-AMPK, CPT-1A and FAS and the pro-inflammatory factors iNOS and IL-6 were determined. The WEATs not only reduced the body weight and white fat accumulation in the HFD-induced obese mice, but also relieved hepatic steatosis. Comparing the effects of the six kinds of tea showed that white tea has the best anti-obesity effect. Yellow tea and raw pu-erh tea significantly up-regulated p-AMPK, green tea, white tea and raw pu-erh tea markedly inhibited FAS, and white tea, yellow tea and oolong tea up-regulated CPT-1. Therefore, it is possible that white tea, yellow tea and oolong tea inhibit obesity by increasing energy expenditure and fatty acid oxidation, while green tea, white tea and raw pu-erh tea exert their effects by inhibiting fatty acid synthesis. In addition, the WEATs also significantly decreased the levels of IL-6, while green tea, yellow tea and oolong tea significantly inhibited iNOS. Different types of tea have specific chemical compositions and can regulate different lipid metabolism related proteins. In conclusion, despite variations in its composition and mechanism of action, tea is a potent anti-obesity agent.


Asunto(s)
Fármacos Antiobesidad/administración & dosificación , Camellia sinensis/química , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Quinasas de la Proteína-Quinasa Activada por el AMP , Tejido Adiposo Blanco/metabolismo , Animales , Fármacos Antiobesidad/química , Camellia sinensis/clasificación , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Humanos , Interleucina-6/genética , Interleucina-6/inmunología , Masculino , Ratones , Ratones Endogámicos ICR , Obesidad/etiología , Obesidad/inmunología , Obesidad/metabolismo , Extractos Vegetales/química , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA