Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cytokine ; 184: 156781, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39454251

RESUMEN

The management of chronic kidney disease (CKD) is a global health challenge. Elevated levels of inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), are associated with higher mortality rates in patients with CKD. Moreover, increased fibroblast growth factor 23 (FGF23) levels are a strong predictor of adverse clinical outcomes in CKD. The production of Klotho, which plays a protective role is decreased in patients with CKD. However, the relationship between FGF23-Klotho and levels of inflammatory factors in patients with CKD is unclear. This study aimed to explore the effects of changes in the FGF23-Klotho axis on inflammatory factors in patients with CKD, with a view to providing ideas for novel treatments of CKD. Clinical data were collected from 85 patients with CKD and 17 healthy subjects admitted to the Department of Nephrology of Henan Provincial People's Hospital between June-August 2023. The differences in biochemical indicators at various stages of CKD and healthy people were analyzed. Using enzyme-linked immunosorbent assay and immunohistochemistry, changes in the FGF23-Klotho axis, and their relationship with interleukin 6 (IL-6) and TNF-α were assessed. FGF23 levels gradually increased from CKD stages 1 to 5, with significant differences observed between stages 3 to 5. Klotho levels significantly decreased in CKD stages 3-5. The levels of C-reactive protein (CRP), IL-6, and TNF-α gradually increased. Overall, FGF23 expression was negatively correlated with Klotho levels and positively correlated with CRP, IL-6, and TNF-α levels. In renal tubular epithelial cells, knockdown of Klotho and overexpression of FGF23 increased the expression of inflammatory factors; however, their levels were significantly lower than that of the Klotho knockdown group. Collectively, these findings demonstrate that in CKD, the FGF23-Klotho axis promotes the expression of inflammatory cytokines in renal tubular epithelial cells.

2.
Ecotoxicol Environ Saf ; 284: 116944, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208575

RESUMEN

Aristolochic acid (AA) exposure is a severe public health concern worldwide. AAs damage the kidney with an inevitable acute phase that is similar to acute kidney injury (AKI). Gasdermin E (GSDME) is abundant in the kidney; thus; it-mediated pyroptosis might be essential in connecting cell death and inflammation and promoting AAs-AKI. However, the role and exact mechanism of pyroptosis in AAs-AKI have not been investigated. In this study, aristolochic acid I (AAI) was used to establish AKI models. The expression and translocation results showed GSDME-mediated pyroptosis in AAI-AKI. Knocking down GSDME attenuated AAI-induced cell death and transcription of proinflammatory cytokines. Mechanistic research inhibiting caspase (casp) 3, casp 8, and casp 9 with specific chemical antagonists demonstrated that GSDME was activated by cleaved casp 3. Furthermore, the kinase activity of upstream receptor-interacting protein kinase 1 (RIPK1) was significantly elevated, and inhibiting RIPK1 with specific inhibitors markedly improved AAI-induced cell damage. In addition, the level of autophagy was obviously increased. Pretreatment with a specific autophagic inhibitor (3-methyladenine) or knockdown of autophagic genes (Atg5 or Atg7) evidently reduced the activity of RIPK1 and downstream apoptosis and pyroptosis, thus attenuating AA-induced cell injury, which suggested that RIPK1 was a novel link conferring autophagic promotion of pyroptosis. These findings reveal GSDME-mediated pyroptosis for the first time in AAI-induced AKI, propose its novel role in the transcription of cytokines, and demonstrate that autophagy promotes pyroptosis via the RIPK1-dependent apoptotic pathway. This study promotes the understanding of the toxic effects and exact mechanisms of AAs. This will contribute to evaluating the environmental risk of AA exposure and might provide potential therapeutic targets for AA-AKI.


Asunto(s)
Lesión Renal Aguda , Ácidos Aristolóquicos , Autofagia , Piroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Ácidos Aristolóquicos/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Piroptosis/efectos de los fármacos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Autofagia/efectos de los fármacos , Animales , Ratones , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Citocinas/metabolismo , Gasderminas
3.
Clin Transl Med ; 14(6): e1734, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888967

RESUMEN

BACKGROUND: Sporadic parathyroid adenoma (PA) is the most common cause of hyperparathyroidism, yet the mechanisms involved in its pathogenesis remain incompletely understood. METHODS: Surgically removed PA samples, along with normal parathyroid gland (PG) tissues that were incidentally dissected during total thyroidectomy, were analysed using single-cell RNA-sequencing with the 10× Genomics Chromium Droplet platform and Cell Ranger software. Gene set variation analysis was conducted to characterise hallmark pathway gene signatures, and single-cell regulatory network inference and clustering were utilised to analyse transcription factor regulons. Immunohistochemistry and immunofluorescence were performed to validate cellular components of PA tissues. siRNA knockdown and gene overexpression, alongside quantitative polymerase chain reaction, Western blotting and cell proliferation assays, were conducted for functional investigations. RESULTS: There was a pervasive increase in gene transcription in PA cells (PACs) compared with PG cells. This is associated with high expression of histone-lysine N-methyltransferase 2A (KMT2A). High KMT2A levels potentially contribute to promoting PAC proliferation through upregulation of the proto-oncogene CCND2, which is mediated by the transcription factors signal transducer and activator of transcription 3 (STAT3) and GATA binding protein 3 (GATA3). PA tissues are heavily infiltrated with myeloid cells, while fibroblasts, endothelial cells and macrophages in PA tissues are commonly enriched with proinflammatory gene signatures relative to their counterparts in PG tissues. CONCLUSIONS: We revealed the previously underappreciated involvement of the KMT2A‒STAT3/GATA3‒CCND2 axis and chronic inflammation in the pathogenesis of PA. These findings underscore the therapeutic promise of KMT2A inhibition and anti-inflammatory strategies, highlighting the need for future investigations to translate these molecular insights into practical applications. HIGHLIGHTS: Single-cell RNA-sequencing reveals a transcriptome catalogue comparing sporadic parathyroid adenomas (PAs) with normal parathyroid glands. PA cells show a pervasive increase in gene expression linked to KMT2A upregulation. KMT2A-mediated STAT3 and GATA3 upregulation is key to promoting PA cell proliferation via cyclin D2. PAs exhibit a proinflammatory microenvironment, suggesting a potential role of chronic inflammation in PA pathogenesis.


Asunto(s)
Adenoma , N-Metiltransferasa de Histona-Lisina , Inflamación , Neoplasias de las Paratiroides , Humanos , Adenoma/genética , Adenoma/metabolismo , Adenoma/patología , Proliferación Celular/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Inflamación/genética , Inflamación/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Neoplasias de las Paratiroides/genética , Neoplasias de las Paratiroides/metabolismo , Neoplasias de las Paratiroides/patología
4.
iScience ; 27(3): 109197, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433902

RESUMEN

Magnesium alloy is an excellent material for biodegradable cerebrovascular stents. However, the rapid degradation rate of magnesium alloy will make stent unstable. To improve the biocompatibility of magnesium alloy, in this study, biodegradable sodium alginate and carboxymethyl chitosan (SA/CMCS) was used to coat onto hydrothermally treated the surface of magnesium alloy by a dipping coating method. The results show that the SA/CMCS coating facilitates the growth, proliferation, and migration of endothelial cells and promotes neovascularization. Moreover, the SA/CMCS coating suppresses macrophage activation while promoting their transformation into M2 type macrophages. Overall, the SA/CMCS coating demonstrates positive effects on the safety and biocompatibility of magnesium alloy after implantation, and provide a promising therapy for the treatment of intracranial atherosclerotic stenosis in the future.

5.
Sci Rep ; 14(1): 624, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182642

RESUMEN

Disulfidptosis, a novel form of regulated cell death, occurs due to the aberrant accumulation of intracellular cystine and other disulfides. Moreover, targeting disulfidptosis could identify promising approaches for cancer treatment. Long non-coding RNAs (lncRNAs) are known to be critically implicated in clear cell renal cell carcinoma (ccRCC) development. Currently, the involvement of disulfidptosis-related lncRNAs in ccRCC is yet to be elucidated. This study primarily dealt with identifying and validating a disulfidptosis-related lncRNAs-based signature for predicting the prognosis and immune landscape of individuals with ccRCC. Clinical and RNA sequencing data of ccRCC samples were accessed from The Cancer Genome Atlas (TCGA) database. Pearson correlation analysis was conducted for the identification of the disulfidptosis-related lncRNAs. Additionally, univariate Cox regression analysis, Least Absolute Shrinkage and Selection Operator Cox regression, and stepwise multivariate Cox analysis were executed to develop a novel risk prognostic model. The prognosis-predictive capacity of the model was then assessed using an integrated method. Variation in biological function was noted using GO, KEGG, and GSEA. Additionally, immune cell infiltration, the tumor mutational burden (TMB), and tumor immune dysfunction and exclusion (TIDE) scores were calculated to investigate differences in the immune landscape. Finally, the expression of hub disulfidptosis-related lncRNAs was validated using qPCR. We established a novel signature comprised of eight lncRNAs that were associated with disulfidptosis (SPINT1-AS1, AL121944.1, AC131009.3, AC104088.3, AL035071.1, LINC00886, AL035587.2, and AC007743.1). Kaplan-Meier and receiver operating characteristic curves demonstrated the acceptable predictive potency of the model. The nomogram and C-index confirmed the strong correlation between the risk signature and clinical decision-making. Furthermore, immune cell infiltration analysis and ssGSEA revealed significantly different immune statuses among risk groups. TMB analysis revealed the link between the high-risk group and high TMB. It is worth noting that the cumulative effect of the patients belonging to the high-risk group and having elevated TMB led to decreased patient survival times. The high-risk group depicted greater TIDE scores in contrast with the low-risk group, indicating greater potential for immune escape. Finally, qPCR validated the hub disulfidptosis-related lncRNAs in cell lines. The established novel signature holds potential regarding the prognosis prediction of individuals with ccRCC as well as predicting their responses to immunotherapy.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , ARN Largo no Codificante , Humanos , Carcinoma de Células Renales/genética , Pronóstico , ARN Largo no Codificante/genética , Neoplasias Renales/genética
6.
J Cardiothorac Surg ; 18(1): 360, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115087

RESUMEN

BACKGROUND: To summarize the anesthesia management experience for pediatric day-case patent ductus arteriosus (PDA) ligation under robot-assisted thoracoscopy and explore the key points of anesthesia management for this procedure. METHODS: The clinical data of 72 pediatric patients who underwent robot-assisted thoracoscopic day-case PDA ligation at the Children's Hospital, Zhejiang University School of Medicine from April 2021 to February 2023 were retrospectively analyzed. 0.3% ropivacaine local infiltration combined with S-ketamine 0.2 mg/kg intravenous injection was used for postoperative analgesia The patient's basic information and intraoperative conditions were analyzed, which included gender, age, weight, surgery time, anesthesia time, extubation time, intraoperative blood loss, MAP before pneumothorax, PaCO2 before pneumothorax, etc. Postoperative conditions were also monitored, such as PACU stay time, agitation during the recovery period, pain, and the incidence of nausea and vomiting. After discharge, the recovery status was assessed. RESULTS: A total of 70 pediatric patients who met the criteria for day-case PDA ligation were included in this study. Before the occurrence of pneumothorax, the mean arterial pressure (MAP) of these 70 patients was 69.58 ± 12.52 mmHg, and during controlled hypotension, the MAP was 54.96 ± 11.23 mmHg. Before the occurrence of pneumothorax, the partial pressure of carbon dioxide (PaCO2) was 38.69 ± 3.38 mmHg, and during controlled hypotension, the PaCO2 was 51.42 ± 4.05 mmHg. Three cases experienced agitation during the recovery period, and four cases had mild pain, but there was no moderate or severe pain, nausea, or vomiting. Only 1 case of postoperative respiratory tract infection and 1 case of postoperative pneumothorax occurred. Within 30 days after discharge, the unplanned revisit rate, unplanned readmission rate, and surgical wound infection rate were all 0. The residual shunt rate detected by echocardiography was 0 after 1 month. CONCLUSIONS: The children under the robot-assisted thoracoscopic day case PDA surgeries in this study have limited trauma, little bleeding, and little postoperative pain, though still at a risk of respiratory infection and pneumothorax.


Asunto(s)
Anestesia , Conducto Arterioso Permeable , Neumotórax , Robótica , Humanos , Niño , Estudios Retrospectivos , Conducto Arterioso Permeable/cirugía , Toracoscopía , Ligadura/métodos , Dolor , Náusea , Vómitos
7.
Front Endocrinol (Lausanne) ; 14: 1180338, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305031

RESUMEN

Background: Identification of risk factors that have causal effects on the occurrence of diabetic kidney disease (DKD), is of great significance in early screening and intervening for DKD, and in delaying the progression of DKD to end-stage renal disease. Cathepsin S (Cat-S), a novel non-invasive diagnostic marker, mediates vascular endothelial dysfunction. The diagnostic value of Cat-S for DKD has rarely been reported in clinical studies. Objective: To analyze whether Cat-S is a risk factor for DKD and evaluate the diagnostic value of serum Cat-S for DKD. Methods: Forty-three healthy subjects and 200 type 2 diabetes mellitus (T2DM) patients were enrolled. T2DM patients were divided into subgroups according to various criteria. Enzyme-linked immunosorbent assay was used to detect serum Cat-S levels among different subgroups. Spearman correlation analysis was used to analyze correlations between serum Cat-S and clinical indicators. Multivariate logistic regression analysis was performed to analyze risk factors for the occurrence of DKD and decreased renal function in T2DM patients. Results: Spearman analysis showed that serum Cat-S level was positively correlated with urine albumin creatinine ratio (r=0.76, P<0.05) and negatively correlated with estimated glomerular filtration rate (r=-0.54, P<0.01). Logistic regression analysis showed that increased serum Cat-S and cystatin C(CysC) were independent risk factors for DKD and decreased renal function in T2DM patients (P<0.05). The area under the receiver operating characteristic (ROC) curve was 0.900 of serum Cat-S for diagnosing DKD, and when the best cut-off value was 827.42 pg/mL the sensitivity and specificity were 71.6% and 98.8%, respectively. Thus, serum Cat-S was better than CysC for diagnosing DKD (for CysC, the area under the ROC curve was 0.791, and when the cut-off value was 1.16 mg/L the sensitivity and specificity of CysC were 47.4% and 98.8%, respectively). Conclusion: Increased serum Cat-S were associated with the progression of albuminuria and decreased renal function in T2DM patients. The diagnostic value of serum Cat-S was better than that of CysC for DKD. Monitoring of serum Cat-S levels could be helpful for early screening DKD and assessing the severity of DKD and could provide a new strategy for diagnosing DKD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/etiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Catepsinas , Factores de Riesgo
9.
Immun Inflamm Dis ; 11(4): e828, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37102663

RESUMEN

OBJECTIVE: This study mainly observes changes in perioperative mineral bone metabolism-related indicators and inflammatory factors in patients with secondary hyperparathyroidism (SHPT), and analyzed the correlation between mineral bone metabolism-related indicators and inflammatory factors. METHODS: Clinical data were collected. The study detects mineral bone metabolism-related indicators and inflammatory factor of perioperative patients with SHPT before and 4 days after operation. The production of high-sensitivity c-reactive protein (hs-CRP) in human hepatocytes cells (LO2 cells) stimulated by different concentrations of parathyroid hormone-associated protein was detected by enzyme-linked immunosorbent assay, reverse-transcription polymerase chain reaction (RT-PCR), and western blot. RESULTS: The levels of mineral bone metabolism-related indicators and hs-CRP in SHPT group were significantly higher than those of control group. After operation, serum calcium, serum phosphorus, iPTH, FGF-23 decreased, and the level of osteoblast active biomarkers increased, while the level of osteoclast active biomarkers decreased. The levels of hs-CRP decreased significantly after operation. With the increase of PTHrP concentration, hs-CRP level in supernatant of LO2 cells decreased first and then increased. RT-PCR and western blot shows the same trend. CONCLUSION: Parathyroidectomy can significantly improve bone resorption and inflammation in SHPT patients. We speculate that there may be an optimal range of PTH concentrations to minimize inflammation in the body.


Asunto(s)
Proteína C-Reactiva , Hiperparatiroidismo Secundario , Humanos , Hiperparatiroidismo Secundario/cirugía , Minerales , Biomarcadores , Periodo Perioperatorio
10.
Chin Med J (Engl) ; 136(5): 541-549, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36914946

RESUMEN

BACKGROUND: Transplant renal artery stenosis (TRAS) is a vascular complication after kidney transplantation associated with poor outcomes. This study aimed to analyze the efficacy and safety of low-dose aspirin for preventing TRAS. METHODS: After kidney transplantation, patients were enrolled from January 2018 to December 2020 in Henan Provincial People's Hospital. A total of 351 enrolled recipients were randomized to an aspirin group with low-dose intake of aspirin in addition to standard treatment ( n = 178), or a control group with only standard treatment ( n = 173). The patients was initially diagnosed as TRAS (id-TRAS) by Doppler ultrasound, and confirmed cases were diagnosed by DSA (c-TRAS). RESULTS: In the aspirin and control groups, 15.7% (28/178) and 22.0% (38/173) of the recipients developed id-TRAS, respectively, with no statistical difference. However, for c-TRAS, the difference of incidence and cumulative incidence was statistically significant. The incidence of c-TRAS was lower in the aspirin group compared with the control group (2.8% [5/178] vs. 11.6% [20/173], P = 0.001). Kaplan-Meier estimates and Cox regression model identified the cumulative incidence and hazard ratio (HR) of TRAS over time in two groups, showing that recipients treated with aspirin had a significantly lower risk of c-TRAS than those who were not treated (log-rank P  = 0.001, HR = 0.23, 95% confidence interval [CI]: 0.09-0.62). The levels of platelet aggregation rate ( P  < 0.001), cholesterol ( P  = 0.028), and low-density lipoprotein cholesterol ( P  = 0.003) in the aspirin group were decreased compared with the control group in the third-month post-transplantation. For the incidence of adverse events, there was no statistical difference. CONCLUSION: Clinical application of low-dose aspirin after renal transplant could prevent the development of TRAS with no significant increase in adverse effects. TRIAL REGISTRATION: Clinicaltrials.gov, NCT04260828.


Asunto(s)
Obstrucción de la Arteria Renal , Humanos , Estudios Prospectivos , Resultado del Tratamiento , Angiografía , Aspirina
11.
Adv Sci (Weinh) ; 10(7): e2204599, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638271

RESUMEN

P53 inactivation occurs in about 50% of human cancers, where p53-driven p21 activity is devoid and p27 becomes essential for the establishment of the G1/S checkpoint upon DNA damage. Here, this work shows that the E2F1-responsive lncRNA LIMp27 selectively represses p27 expression and contributes to proliferation, tumorigenicity, and treatment resistance in p53-defective colon adenocarcinoma (COAD) cells. LIMp27 competes with p27 mRNA for binding to cytoplasmically localized hnRNA0, which otherwise stabilizes p27 mRNA leading to cell cycle arrest at the G0/G1 phase. In response to DNA damage, LIMp27 is upregulated in both wild-type and p53-mutant COAD cells, whereas cytoplasmic hnRNPA0 is only increased in p53-mutant COAD cells due to translocation from the nucleus. Moreover, high LIMp27 expression is associated with poor survival of p53-mutant but not wild-type p53 COAD patients. These results uncover an lncRNA mechanism that promotes p53-defective cancer pathogenesis and suggest that LIMp27 may constitute a target for the treatment of such cancers.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , ARN Largo no Codificante , Humanos , Daño del ADN/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo
12.
J Alzheimers Dis ; 91(4): 1541-1555, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36641679

RESUMEN

BACKGROUND: Chronic cerebral hypoperfusion (CCH) is associated with neuronal loss and blood-brain barrier (BBB) impairment in vascular dementia (VaD). However, the relationship and the molecular mechanisms between BBB dysfunction and neuronal loss remain elusive. OBJECTIVE: We explored the reasons for neuron loss following CCH. METHODS: Using permanent bilateral common carotid artery occlusion (2VO) rat model, we observed the pathological changes of cortical neurons and BBB in the sham group as well as rats 3d, 7d, 14d and 28d post 2VO. In order to further explore the factors influencing neuron loss following CCH with regard to cortical blood vessels, we extracted cortical brain microvessels at five time points for transcriptome sequencing. Finally, integrin receptor a4ß1 (VLA-4) inhibitor was injected into the tail vein, and cortical neuron loss was detected again. RESULTS: We found that cortical neuron loss following CCH is a continuous process, but damage to the BBB is acute and transient. Results of cortical microvessel transcriptome analysis showed that biological processes related to vascular inflammation mainly occurred in the chronic phase. Meanwhile, cell adhesion molecules, cytokine-cytokine receptor interaction were significantly changed at this phase. Among them, the adhesion molecule VCAM1 plays an important role. Using VLA-4 inhibitor to block VCAM1-VLA-4 interaction, cortical neuron damage was ameliorated at 14d post 2VO. CONCLUSION: Injury of the BBB may not be the main reason for persistent loss of cortical neurons following CCH. The continuous inflammatory response within blood vessels maybe an important factor in the continuous loss of cortical neurons following CCH.


Asunto(s)
Isquemia Encefálica , Demencia Vascular , Molécula 1 de Adhesión Celular Vascular , Animales , Ratas , Encéfalo/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Demencia Vascular/metabolismo , Demencia Vascular/patología , Modelos Animales de Enfermedad , Inflamación/complicaciones , Inflamación/metabolismo , Integrina alfa4beta1/metabolismo , Neuronas/metabolismo , Neuronas/patología , Molécula 1 de Adhesión Celular Vascular/metabolismo
13.
Cells ; 11(19)2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36230932

RESUMEN

Cisplatin is widely used as a chemotherapeutic drug to treat various solid tumors. However, it often induces severe side effects, including nephrotoxicity, which limits its application in clinical settings. Furthermore, the underlying mechanisms of action are unclear. Here, we applied whole-transcriptome RNA sequencing to a cisplatin-induced acute kidney injury (CP-AKI) mouse model to evaluate competing endogenous RNA (ceRNA) networks. We found 4460 mRNAs, 1851 long non-coding RNAs, 101 circular RNAs, and 102 microRNAs significantly differentially expressed between CP-AKI and control mice. We performed gene set enrichment analysis to reveal the biological functions of the mRNAs and constructed non-coding RNA-associated ceRNA networks in CP-AKI mice. Two ceRNA regulatory pathways, Lhx1os-203/mmu-miR-21a-3p/Slc7a13 and circular RNA_3907/mmu-miR-185-3p/Ptprn, were validated using quantitative real-time PCR. The protein-protein interaction network indicated that Il6, Cxcl1, Cxcl2, and Plk1 serve as hub genes and are highly connected with the inflammatory response or DNA damage. Transcription factors, such as Stat3, Cebpb, and Foxm1, regulate gene expression levels in CP-AKI. Our study provides insight into non-coding RNA-associated ceRNA networks and mRNAs in CP-AKI and identifies potential treatment targets.


Asunto(s)
Lesión Renal Aguda , MicroARNs , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Animales , Cisplatino/efectos adversos , Perfilación de la Expresión Génica , Interleucina-6/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética
14.
J Exp Clin Cancer Res ; 41(1): 260, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028903

RESUMEN

BACKGROUND: Distant metastasis is the major cause of clear cell renal cell carcinoma (ccRCC)-associated mortality. However, molecular mechanisms involved in ccRCC metastasis remain to be fully understood. With the increasing appreciation of the role of long non-coding RNAs (lncRNAs) in cancer development, progression, and treatment resistance, the list of aberrantly expressed lncRNAs contributing to ccRCC pathogenesis is expanding rapidly. METHODS: Bioinformatics analysis was carried out to interrogate publicly available ccRCC datasets. In situ hybridization and qRT-PCR assays were used to test lncRNA expression in human ccRCC tissues and cell lines, respectively. Chromatin immunoprecipitation and luciferase reporter assays were used to examine transcriptional regulation of gene expression. Wound healing as well as transwell migration and invasion assays were employed to monitor ccRCC cell migration and invasion in vitro. ccRCC metastasis was also examined using mouse models in vivo. RNA pulldown and RNA immunoprecipitation were performed to test RNA-protein associations, whereas RNA-RNA interactions were tested using domain-specific chromatin isolation by RNA purification. RESULTS: MILIP expression was upregulated in metastatic compared with primary ccRCC tissues. The increased MILIP expression in metastatic ccRCC cells was driven by the transcription factor AP-2 gamma (TFAP2C). Knockdown of MILIP diminished the potential of ccRCC cell migration and invasion in vitro and reduced the formation of ccRCC metastatic lesions in vivo. The effect of MILIP on ccRCC cells was associated with alterations in the expression of epithelial-to-mesenchymal transition (EMT) hallmark genes. Mechanistically, MILIP formed an RNA-RNA duplex with the snail family transcriptional repressor 1 (Snai1) mRNA and bound to Y-box binding protein 1 (YBX1). This promoted the association between the YBX1 protein and the Snai1 mRNA, leading to increased translation of the latter. Snai1 in turn played an important role in MILIP-driven ccRCC metastasis. CONCLUSIONS: The TFAP2C-responsive lncRNA MILIP drives ccRCC metastasis. Targeting MILIP may thus represent a potential avenue for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , ARN Largo no Codificante , Factores de Transcripción de la Familia Snail , Proteína 1 de Unión a la Caja Y , Animales , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Ratones , ARN Largo no Codificante/genética , ARN Mensajero , Factores de Transcripción de la Familia Snail/genética , Proteína 1 de Unión a la Caja Y/genética
15.
Ecotoxicol Environ Saf ; 242: 113881, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35863214

RESUMEN

Cobalt is a transition element that abundantly exists in the environment. Besides direct hypoxia stress, cobalt ions indirectly induce hypoxia-reoxygenation injury (HRI), the main cause of acute kidney injury (AKI), a life-threatening clinical syndrome characterized by the necrosis of the proximal tubular epithelial cells (PTECs) and inflammation. Pyroptosis, a type of inflammatory programmed cell death, might play an essential role in HRI-AKI. However, whether pyroptosis is involved in cobalt chloride (CoCl2)-induced HRI-AKI remains unknown. Autophagy is a cellular biological process maintaining cell homeostasis that is involved in cell damage in AKI, yet the underlying regulatory mechanism of autophagy on pyroptosis has not been fully understood. In this study, the in vitro and in vivo models of CoCl2-induced HRI-AKI were established with HK-2 cell line and C57BL/6J mouse. Pyroptosis-related markers were detected with western blotting and immunofluorescence assays, and results showed that gasdermin E (GSDME)-mediated pyroptosis was involved in the cell damage in HRI-AKI. Specific chemical inhibitors of caspase 3, caspase 8, and caspase 9 significantly inhibited GSDME-mediated pyroptosis, verifying that GSDME-mediated pyroptosis was induced via the activation of caspase 3/8/9. The western blotting and immunofluorescence assays were adopted to detect the accumulation of the autophagosomes, and results suggested that HRI increased the autophagic level. The effects of autophagy on apoptosis and pyroptosis were evaluated using lentivirus transfection assays to knock down autophagy-specific genes atg5 and fip200, and results demonstrated that autophagy induced GSDME-mediated pyroptosis via apoptotic pathways in HRI-AKI. Our results revealed the involvement of GSDME-mediated pyroptosis in CoCl2-induced HRI-AKI and promoted the understanding of the regulatory mechanism of GSDME cleavage. Our study might provide a potential therapeutic target for HRI-AKI, and will be helpful for the risk evaluation of cobalt exposure.


Asunto(s)
Lesión Renal Aguda , Piroptosis , Lesión Renal Aguda/inducido químicamente , Animales , Apoptosis , Autofagia , Caspasa 3/metabolismo , Cobalto/toxicidad , Humanos , Hipoxia , Ratones , Ratones Endogámicos C57BL , Proteínas Citotóxicas Formadoras de Poros
16.
Front Neurosci ; 16: 850857, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573303

RESUMEN

The blood-brain barrier (BBB) comprises a single layer of endothelial cells and maintains a safe and homeostatic environment for proper neuronal function and synaptic transmission. BBB is not a discrete physical barrier, but a complex, dynamic, and adaptable interface. BBB continues to mature under the influence of the neural environment within a short period of time after birth. However, the basic mechanism of BBB formation and maintenance remains a mystery. Early studies have identified two structural characteristics of microvascular endothelium: special tight junctions (TJs) and a very low transcellular vesicle transport rate. Previous studies believed that BBB damage was mainly due to the destruction of tight junctions, and the role of vesicle transcytosis was neglected, so there was a lack of research on its impact on blood-brain barrier. It is urgent to get a better clarification of the unique structural and functional characteristics of the BBB endothelium to explain the role of BBB injury in neurological diseases. RNA sequencing was used to study the molecular characterization of cerebral cortex vascular endothelium by isolating them from neonatal, adolescent and adult rats. For investigation the maintenance mechanism of the BBB, we focused on the cellular and molecular regulation of barrier formation and the two characteristics of microvascular endothelial cells. Interestingly, we found that during the development of the blood-brain barrier, although the tight junctions gradually mature, endothelial cell transcytosis is gradually enhanced, resulting in an increase in the permeability of the blood-brain barrier. This study suggested that under physiological conditions, low vesicle transport is playing an important role in maintaining the integrity of the blood-brain barrier. This study not only summarized the unique characteristics of microvascular endothelial cells, but also illustrated a clarified mechanism of the development and maintenance of BBB which can provide new therapeutic opportunities for central nervous system drug delivery. Raw data of RNA sequencing were deposited in NCBI Sequence Read Archive database (PRJNA790676).

17.
Medicine (Baltimore) ; 101(7): e28854, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35363185

RESUMEN

ABSTRACT: The aim of the study was to investigate the influence of intrarenal RAS on the decrease of renal function in patients undergoing cardiac surgery with cardiopulmonary bypass. This observational study investigated the activation of intrarenal RAS in 24 patients with AKI after cardiac surgery with cardiopulmonary bypass. The activation of intrarenal RAS was determined by urinary angiotensinogen (uAGT), which was measured at 12 hours before surgery, 0 and12 hours after surgery. The results were compared with those of 21 patients without AKI after cardiac surgery with cardiopulmonary bypass. Clinical and laboratory data were collected. Compared with baseline, all patients with cardiac surgery had activation of intrarenal RAS at 0 and 12 hours after surgery. The activation of intrarenal RAS was found significantly higher at both 0 and 12 hours after surgery in AKI group versus non AKI group (6.18 ±â€Š1.93 ng/mL vs 3.49 ±â€Š1.71 ng/mL, 16.38 ±â€Š7.50 ng/mL vs 6.04 ±â€Š2.59 ng/mL, respectively). There was a positive correlation between the activation of RAS at 0 hour after surgery and the decrease of renal function at 48 hours after surgery (r = 0.654, P = .001). These findings suggest that uAGT might be a suitable biomarker for prediction of the occurrence and severity of AKI after cardiac surgery. Inhibition of intrarenal RAS activation might be one the path of future treatment for this type of disease.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Sistema Renina-Angiotensina , Biomarcadores/metabolismo , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Puente Cardiopulmonar/efectos adversos , Humanos , Riñón
18.
Theranostics ; 11(19): 9605-9622, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646389

RESUMEN

Rationale: Recurrent and metastatic cancers often undergo a period of dormancy, which is closely associated with cellular quiescence, a state whereby cells exit the cell cycle and are reversibly arrested in G0 phase. Curative cancer treatment thus requires therapies that either sustain the dormant state of quiescent cancer cells, or preferentially, eliminate them. However, the mechanisms responsible for the survival of quiescent cancer cells remain obscure. Methods: Dual genome-editing was carried out using a CRISPR/Cas9-based system to label endogenous p27 and Ki67 with the green and red fluorescent proteins EGFP and mCherry, respectively, in melanoma cells. Analysis of transcriptomes of isolated EGFP-p27highmCherry-Ki67low quiescent cells was conducted at bulk and single cell levels using RNA-sequencing. The extracellular acidification rate and oxygen consumption rate were measured to define metabolic phenotypes. SiRNA and inducible shRNA knockdown, chromatin immunoprecipitation and luciferase reporter assays were employed to elucidate mechanisms of the metabolic switch in quiescent cells. Results: Dual labelling of endogenous p27 and Ki67 with differentiable fluorescent probes allowed for visualization, isolation, and analysis of viable p27highKi67low quiescent cells. Paradoxically, the proto-oncoprotein c-Myc, which commonly drives malignant cell cycle progression, was expressed at relatively high levels in p27highKi67low quiescent cells and supported their survival through promoting mitochondrial oxidative phosphorylation (OXPHOS). In this context, c-Myc selectively transactivated genes encoding OXPHOS enzymes, including subunits of isocitric dehydrogenase 3 (IDH3), whereas its binding to cell cycle progression gene promoters was decreased in quiescent cells. Silencing of c-Myc or the catalytic subunit of IDH3, IDH3α, preferentially killed quiescent cells, recapitulating the effect of treatment with OXPHOS inhibitors. Conclusion: These results establish a rigorous experimental system for investigating cellular quiescence, uncover the high selectivity of c-Myc in activating OXPHOS genes in quiescent cells, and propose OXPHOS targeting as a potential therapeutic avenue to counter cancer cells in quiescence.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Antígeno Ki-67/metabolismo , Melanoma/metabolismo , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Isocitrato Deshidrogenasa/metabolismo , Neoplasias/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Fase de Descanso del Ciclo Celular , Transcriptoma/genética
19.
Cell Signal ; 88: 110155, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34562605

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are reported to be associated with multiple biological processes in human cancers. However, there are still numerous circRNAs whose functions remain unclear. The aim of this study was to investigate the role of circ_0011058 in papillary thyroid cancer (PTC). METHODS: Quantitative real-time PCR (qPCR) was utilized to detect the expression of circ_0011058, microRNA-335-5p (miR-335-5p) and Yes-associated Protein 1 (YAP1). Cell proliferation was detected using cell counting kit-8 (CCK-8) assay and EdU assay. Cell apoptosis was detected by flow cytometry assay. Angiogenesis ability was assessed using tube formation assay. The expression of angiogenesis-related proteins and YAP1 protein was detected by western blot. Radioresistance was examined using colony formation assay. The binding relationship between miR-335-5p and circ_0011058 or YAP1 was verified by dual-luciferase reporter assay, pull-down assay and RIP assay. Xenograft models were constructed to ensure the role of circ_0011058. RESULTS: Circ_0011058 expression was aberrantly elevated in PTC tissues and cells. The downregulation of circ_0011058 suppressed proliferation, angiogenesis and radioresistance in PTC cells. MiR-335-5p was defined as a target of circ_0011058, and miR-335-5p inhibition reversed the effects of circ_0011058 downregulation. In addition, YAP1 was a target of miR-335-5p, and circ_0011058 positively regulated YAP1 expression by targeting miR-335-5p. MiR-335-5p restoration inhibited proliferation, angiogenesis and radioresistance in PTC cells, while YAP1 overexpression abolished these effects. Animal study showed that circ_0011058 knockdown inhibited tumor growth in vivo. CONCLUSION: Circ_0011058 promoted PTC cell proliferation, angiogenesis and radioresistance by upregulating YAP1 via acting as miR-335-5p sponge.


Asunto(s)
MicroARNs , Neoplasias de la Tiroides , Animales , Proliferación Celular/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/radioterapia , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/radioterapia , Proteínas Señalizadoras YAP
20.
Nat Commun ; 12(1): 3734, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145290

RESUMEN

Genomic amplification of the distal portion of chromosome 3q, which encodes a number of oncogenic proteins, is one of the most frequent chromosomal abnormalities in malignancy. Here we functionally characterise a non-protein product of the 3q region, the long noncoding RNA (lncRNA) PLANE, which is upregulated in diverse cancer types through copy number gain as well as E2F1-mediated transcriptional activation. PLANE forms an RNA-RNA duplex with the nuclear receptor co-repressor 2 (NCOR2) pre-mRNA at intron 45, binds to heterogeneous ribonucleoprotein M (hnRNPM) and facilitates the association of hnRNPM with the intron, thus leading to repression of the alternative splicing (AS) event generating NCOR2-202, a major protein-coding NCOR2 AS variant. This is, at least in part, responsible for PLANE-mediated promotion of cancer cell proliferation and tumorigenicity. These results uncover the function and regulation of PLANE and suggest that PLANE may constitute a therapeutic target in the pan-cancer context.


Asunto(s)
Empalme Alternativo/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/genética , ARN Largo no Codificante/genética , Células A549 , Línea Celular Tumoral , Proliferación Celular/genética , Cromosomas Humanos Par 3/genética , Variaciones en el Número de Copia de ADN/genética , Factor de Transcripción E2F1/metabolismo , Células HCT116 , Ribonucleoproteína Heterogénea-Nuclear Grupo M/genética , Humanos , Células MCF-7 , Neoplasias/patología , Co-Represor 2 de Receptor Nuclear/genética , Interferencia de ARN , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...