Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39287979

RESUMEN

OBJECTIVES: To investigate the characteristics and clonal dynamics of tigecycline-resistant Acinetobacter baumannii (TRAB) isolates from a Chinese hospital from 2016 to 2021. METHODS: A total of 64 TRAB isolates were screened and WGS was performed. Phylogenetic analysis and non-polymorphic mutation analysis were used to analyse their clonal dynamics and tigecycline resistance-related mutations. RT-PCR was used to analyse the expression of the resistance-nodulation cell-division (RND) efflux pump genes adeB and adeJ. Gene cloning was used to explore the effect of tet(39) variants on tigecycline resistance. RESULTS: Most TRAB isolates were found to be MDR, with 95% (61/64) of the isolates showing resistance to carbapenems. These TRAB isolates were classified into three primary genetic clusters based on core-genome SNPs. The KL2 cluster persisted throughout the study period, whereas the KL7 cluster emerged in 2019 and became the dominant clone. The KL7 cluster carried more antimicrobial resistance genes than the other two clusters. The predominant tigecycline resistance mechanism of the KL2 cluster and KL7 cluster was IS insertion in adeN (82.1%, 23/28) and genetic alterations in adeS (76.2%, 16/21), respectively. Eleven novel AdeS mutations were identified associated with elevated AdeB expression and tigecycline resistance. Moreover, we characterized a plasmid-borne tet(39) variant with an Ala-36-Thr substitution that synergizes with the RND efflux pump to confer high-level tigecycline resistance. CONCLUSIONS: This work provides important insights into the diverse mechanisms associated with tigecycline resistance in A. baumannii, highlighting a pressing need for further monitoring of ST2-KL7 A. baumannii in clinical settings.

2.
Microbiol Spectr ; : e0387423, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162556

RESUMEN

Klebsiella quasipneumoniae is a potential pathogen that has not been studied comprehensively. The emergence of multidrug-resistant (MDR) K. quasipneumoniae, specifically strains resistant to tigecycline and carbapenem, presents a significant challenge to clinical treatment. This investigation aimed to characterize MDR K. quasipneumoniae strain FK8966, co-carrying tmexCD2-toprJ2, blaIMP-4, and blaNDM-1 by plasmids. It was observed that FK8966's MDR was primarily because of the IncHI1B-like plasmid co-carrying tmexCD2-toprJ2 and blaIMP-4, and an IncFIB(K)/IncFII(K) plasmid harboring blaNDM-1. Furthermore, the phylogenetic analysis revealed that IncHI1B-like plasmids carrying tmexCD2-toprJ2 were disseminated among different bacteria, specifically in China. Additionally, according to the comparative genomic analysis, the MDR regions indicated that the tmexCD2-toprJ2 gene cluster was inserted into the umuC gene, while blaIMP-4 was present in transposon TnAs3 linked to the class 1 integron (IntI1). It was also observed that an ΔTn3000 insertion with blaNDM-1 made a novel blaNDM-1 harboring IncFIB(K)/IncFII(K) plasmid. The antimicrobial resistance prevalence and phylogenetic analyses of K. quasipneumoniae strains indicated that FK8966 is a distinct MDR branch of K. quasipneumoniae. Furthermore, CRISPR-Cas system analysis showed that many K. quasipneumoniae CRISPR-Cas systems lacked spacers matching the two aforementioned novel resistance plasmids, suggesting that these resistance plasmids have the potential to disseminate within K. quasipneumoniae. Therefore, the spread of MDR K. quasipneumoniae and plasmids warrants further attention.IMPORTANCEThe emergence of multidrug-resistant K. quasipneumoniae poses a great threat to clinical care, and the situation is exacerbated by the dissemination of tigecycline- and carbapenem-resistant genes. Therefore, monitoring these pathogens and their resistance plasmids is urgent and crucial. This study identified tigecycline- and carbapenem-resistant K. quasipneumoniae strain, FK8966. Furthermore, it is the first study to report the coexistence of tmexCD2-toprJ2, blaIMP-4, and blaNDM-1 in K. quasipneumoniae. Moreover, the CRISPR-Cas system of many K. quasipneumoniae lacks spacers that match the plasmids carried by FK8966, which are crucial for mediating resistance against tigecycline and carbapenems, indicating their potential to disseminate within K. quasipneumoniae.

3.
J Phys Chem Lett ; 15(30): 7667-7673, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39037601

RESUMEN

Quantum dot (QD) solids are emerging materials for many optoelectronic applications. To enhance interdot coupling and charge transport, surface ligands can be removed, allowing individual QDs to be attached along specific crystal orientations (termed "oriented attachment"). Optimizing the electronic and optical properties of QD solids demands a comprehensive understanding of the nanoscale energy flow in individual and attached QDs under photoexcitation. In this work, we employed ultrafast electron diffraction to directly measure how oriented attachment along ⟨100⟩ directions affects the nonequilibrium lattice dynamics of lead selenide QDs. The oriented attachment anisotropically alters the ultrafast energy relaxation along specific crystal axes. Along the ⟨100⟩ directions, both the lattice deformation and atomistic random motions are suppressed in comparison with those of individual QDs. Conversely, the effects are enhanced along the unattached ⟨111⟩ directions due to ligand removal. The oriented attachment switches the major lattice thermalization pathways from ⟨100⟩ to ⟨111⟩ directions.

4.
Front Microbiol ; 15: 1291876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765679

RESUMEN

Introduction: Antibiotic misuse and overuse have led to the emergence of carbapenem-resistant bacteria. The global spread of resistance to the novel antibiotic combination ceftazidime-avibactam (CZA) is becoming a severe problem. Antimicrobial peptide PAM-1 offers a novel approach for treating infections caused by antibiotic-resistant bacteria. This study explores its antibacterial and anti-biofilm activities and mechanisms against CZA-resistant Escherichia. Coli (E. coli), evaluating its stability and biosafety as well. Methods: The broth microdilution method, growth curve analysis, crystal violet staining, scanning electron microscopy, and propidium iodide staining/N-phenyl-1-naphthylamine uptake experiments were performed to explore the antibacterial action and potential mechanism of PAM-1 against CZA-resistant E. coli. The biosafety in diverse environments of PAM-1 was evaluated by red blood cell hemolysis, and cytotoxicity tests. Its stability was further assessed under different temperatures, serum concentrations, and ionic conditions using the broth microdilution method to determine its minimum inhibitory concentration (MIC). Galleria mellonella infection model and RT-qPCR were used to investigate the in vivo antibacterial and anti-inflammatory effects. Results and discussion: In vitro antibacterial experiments demonstrated that the MICs of PAM-1 ranged from 2 to 8 µg/mL, with its effectiveness sustained for a duration of 24 h. PAM-1 exhibited significant antibiofilm activities against CZA-resistant E. coli (p < 0.05). Furthermore, Membrane permeability test revealed that PAM-1 may exert its antibacterial effect by disrupting membrane integrity by forming transmembrane pores (p < 0.05). Red blood cell hemolysis and cytotoxicity tests revealed that PAM-1 exerts no adverse effects at experimental concentrations (p < 0.05). Moreover, stability tests revealed its effectiveness in serum and at room temperature. The Galleria mellonella infection model revealed that PAM-1 can significantly improve the survival rate of Galleria mellonella (>50%)for in vivo treatment. Lastly, RT-qPCR revealed that PAM-1 downregulates the expression of inflammatory cytokines (p < 0.05). Overall, our study findings highlight the potential of PAM-1 as a therapeutic agent for CZA-resistant E. coli infections, offering new avenues for research and alternative antimicrobial therapy strategies.

5.
Adv Mater ; 36(23): e2313742, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38444186

RESUMEN

In addition to long-range periodicity, local disorder, with local structures deviating from the average lattice structure, dominates the physical properties of phonons, electrons, and spin subsystems in crystalline functional materials. Experimentally characterizing the 3D atomic configuration of such a local disorder and correlating it with advanced functions remains challenging. Using a combination of femtosecond electron diffraction, structure factor calculations, and time-dependent density functional theory molecular dynamics simulations, the static local disorder and its local anharmonicity in thermoelectric SnSe are identified exclusively. The ultrafast structural dynamics reveal that the crystalline SnSe is composed of multiple locally correlated configurations dominated by the static off-symmetry displacements of Sn (≈0.4 Å) and such a set of locally correlated structures is termed local disorder. Moreover, the anharmonicity of this local disorder induces an ultrafast atomic displacement within 100 fs, indicating the signature of probable THz Einstein oscillators. The identified local disorder and local anharmonicity suggest a glass-like thermal transport channel, which updates the fundamental insight into the long-debated ultralow thermal conductivity of SnSe. The method of revealing the 3D local disorder and the locally correlated interactions by ultrafast structural dynamics will inspire broad interest in the construction of structure-property relationships in material science.

6.
mSphere ; 9(2): e0055323, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38299825

RESUMEN

The bacteriophage is an effective adjunct to existing antibiotic therapy; however, in the course of bacteriophage therapy, host bacteria will develop resistance to bacteriophages, thus affecting the efficacy. Therefore, it is important to describe how bacteria evade bacteriophage attack and the consequences of the biological changes that accompany the development of bacteriophage resistance before the bacteriophage is applied. The specific bacteriophage vB3530 of Pseudomonas aeruginosa (P. aeruginosa) has stable biological characteristics, short incubation period, strong in vitro cleavage ability, and absence of virulence or resistance genes. Ten bacteriophage-resistant strains (TL3780-R) were induced using the secondary infection approach, and the plaque assay showed that vB3530 was less sensitive to TL3780-R. Identification of bacteriophage adsorption receptors showed that the bacterial surface polysaccharide was probably the adsorption receptor of vB3530. In contrast to the TL3780 parental strain, TL3780-R is characterized by the absence of long lipopolysaccharide chains, which may be caused by base insertion of wzy or deletion of galU. It is also intriguing to observe that, in comparison to the parent strain, the bacteriophage-resistant strains TL3780-R mostly exhibited a large cost of fitness (growth rate, biofilm formation, motility, and ability to produce enhanced pyocyanin). In addition, TL3780-R9 showed increased susceptibility to aminoglycosides and chlorhexidine, which may be connected to the loss and down-regulation of mexX expression. Consequently, these findings fully depicted the resistance mechanism of P. aeruginosa to vB3530 and the fitness cost of bacteriophage resistance, laying a foundation for further application of bacteriophage therapy.IMPORTANCEThe bacteriophage is an effective adjunct to existing antibiotic therapy; However, bacteria also develop defensive mechanisms against bacteriophage attack. Thus, there is an urgent need to deeply understand the resistance mechanism of bacteria to bacteriophages and the fitness cost of bacteriophage resistance so as to lay the foundation for subsequent application of the phage. In this study, a specific bacteriophage vB3530 of P. aeruginosa had stable biological characteristics, short incubation period, strong in vitro cleavage ability, and absence of virulence or resistance genes. In addition, we found that P. aeruginosa may lead to phage resistance due to the deletion of galU and the base insertion of wzy, involved in the synthesis of lipopolysaccharides. Simultaneously, we showed the association with the biological state of the bacteria after bacteria acquire bacteriophage resistance, which is extremely relevant to guide the future application of therapeutic bacteriophages.


Asunto(s)
Bacteriófagos , Infecciones por Pseudomonas , Humanos , Bacteriófagos/genética , Pseudomonas aeruginosa , Infecciones por Pseudomonas/terapia , Infecciones por Pseudomonas/microbiología , Antibacterianos/farmacología , Virulencia
7.
ACS Infect Dis ; 10(2): 662-675, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38294410

RESUMEN

The Enterobacter cloacae complex (ECC) is a group of nosocomial pathogens that pose a challenge in clinical treatment due to its intrinsic resistance and the ability to rapidly acquire resistance. Colistin was reconsidered as a last-resort antibiotic for combating multidrug-resistant ECC. However, the persistent emergence of colistin-resistant (COL-R) pathogens impedes its clinical efficacy, and novel treatment options are urgently needed. We propose that azomycin, in combination with colistin, restores the susceptibility of COL-R ECC to colistin in vivo and in vitro. Results from the checkerboard susceptibility, time-killing, and live/dead bacterial cell viability tests showed strong synergistic antibacterial activity in vitro. Animal infection models suggested that azomycin-colistin enhanced the survival rate of infected Galleria mellonella and reduced the bacterial load in the thighs of infected mice, highlighting its superior in vivo synergistic antibacterial activity. Crystal violet staining and scanning electron microscopy unveiled the in vitro synergistic antibiofilm effects of azomycin-colistin. The safety of azomycin and azomycin-colistin at experimental concentrations was confirmed through cytotoxicity tests and an erythrocyte hemolysis test. Azomycin-colistin stimulated the production of reactive oxygen species in COL-R ECC and inhibited the PhoPQ two-component system to combat bacterial growth. Thus, azomycin is feasible as a colistin adjuvant against COL-R ECC infection.


Asunto(s)
Colistina , Nitroimidazoles , Animales , Ratones , Colistina/farmacología , Enterobacter cloacae , Antibacterianos/farmacología
8.
Medicine (Baltimore) ; 103(3): e36912, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241574

RESUMEN

Hallux valgus (HV) is often accompanied by metatarsalgia. This study compared the radiological and clinical outcomes of new triplanar chevron osteotomy (TCO) and chevron osteotomy (CO) in the treatment of HV, especially for patients with plantar callosities and metatarsalgia. In this retrospective analysis, 90 patients (45 patients per group) with mild to moderate HV and plantar callosities were treated with TCO and CO from July 2020 to January 2022. In both procedures, the apex was located in the center of the head of the first metatarsal bone, and the CO was oriented towards the fourth MTPJ at a 60° angle. Plantar-oblique chevron osteotomy was defined as chevron osteotomy and a 20° plantar tilt; TCO was defined as plantar-oblique chevron osteotomy-based metatarsal osteotomy with a 10° tilt towards the metatarsal head. Primary outcome measures included preoperative and postoperative hallux valgus angle, 1 to 2 intermetatarsal angle (IMA), distal metatarsal articular angle (DMAA), first metatarsal length (FML), and second metatarsal head height X-ray images; clinical measurements, including visual analogue scale and American Orthopaedic Foot & Ankle Society (AOFAS) scores; changes in callosity grade and area; and changes in the number of people with metatarsalgia. Secondary outcomes included complications, recurrence rates, and cosmetic appearance. The hallux valgus angle, IMA, and DMAA were significantly lower after surgery (P  < .001) in all patients. In the TCO group, the mean FML and second metatarsal head height increased significantly postoperatively (P < .001). The AOFAS and visual analogue scale scores improved postoperatively in both groups (P < .001). All patients experienced satisfactory pain relief and acceptable cosmesis. The plantar callosity areas were smaller postoperatively in both the TCO and CO groups, but the change in the area (Δarea) in the TCO group significantly differed from that in the CO group (P < .001). The number of postoperative patients with metatarsalgia and the plantar callosity grade were both significantly lower in the TCO group than in the CO group after osteotomy (P < .05). TCO prevents dorsal shift of the metatarsal head and preserves and even increases FML, thereby preventing future metatarsalgia in patients. Therefore, compared with CO, TCO has better orthopedic outcomes and is an effective method for treating mild to moderate HV and preventing transfer metatarsalgia.


Asunto(s)
Callosidades , Enfermedades del Pie , Hallux Valgus , Huesos Metatarsianos , Metatarsalgia , Articulación Metatarsofalángica , Humanos , Hallux Valgus/diagnóstico por imagen , Hallux Valgus/cirugía , Resultado del Tratamiento , Estudios Retrospectivos , Fluorometolona , Metatarsalgia/cirugía , Osteotomía/métodos , Huesos Metatarsianos/cirugía
9.
Microbiol Spectr ; 12(1): e0229523, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38032179

RESUMEN

IMPORTANCE: Colistin is used as a last resort in many infections caused by multidrug-resistant Gram-negative bacteria; however, colistin-resistant (COL-R) is on the rise. Hence, it is critical to develop new antimicrobial strategies to overcome COL-R. We found that nitazoxanide (NTZ) combined with colistin showed notable synergetic antibacterial activity. These findings suggest that the NTZ/colistin combination may provide an effective alternative route to combat COL-R A. baumannii and COL-R Escherichia coli infections.


Asunto(s)
Acinetobacter baumannii , Colistina , Nitrocompuestos , Tiazoles , Colistina/farmacología , Antiparasitarios/farmacología , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana
10.
J Nanobiotechnology ; 21(1): 409, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932843

RESUMEN

BACKGROUND: Carbapenem-resistant Enterobacteriaceae (CRE) present substantial challenges to clinical intervention, necessitating the formulation of novel antimicrobial strategies to counteract them. Nanomaterials offer a distinctive avenue for eradicating bacteria by employing mechanisms divergent from traditional antibiotic resistance pathways and exhibiting reduced susceptibility to drug resistance development. Non-caloric artificial sweeteners, commonly utilized in the food sector, such as saccharin, sucralose, acesulfame, and aspartame, possess structures amenable to nanomaterial formation. In this investigation, we synthesized gold nanoparticles decorated with non-caloric artificial sweeteners and evaluated their antimicrobial efficacy against clinical CRE strains. RESULTS: Among these, gold nanoparticles decorated with aspartame (ASP_Au NPs) exhibited the most potent antimicrobial effect, displaying minimum inhibitory concentrations ranging from 4 to 16 µg/mL. As a result, ASP_Au NPs were chosen for further experimentation. Elucidation of the antimicrobial mechanism unveiled that ASP_Au NPs substantially elevated bacterial reactive oxygen species (ROS) levels, which dissipated upon ROS scavenger treatment, indicating ROS accumulation within bacteria as the fundamental antimicrobial modality. Furthermore, findings from membrane permeability assessments suggested that ASP_Au NPs may represent a secondary antimicrobial modality via enhancing inner membrane permeability. In addition, experiments involving crystal violet and confocal live/dead staining demonstrated effective suppression of bacterial biofilm formation by ASP_Au NPs. Moreover, ASP_Au NPs demonstrated notable efficacy in the treatment of Galleria mellonella bacterial infection and acute abdominal infection in mice, concurrently mitigating the organism's inflammatory response. Crucially, evaluation of in vivo safety and biocompatibility established that ASP_Au NPs exhibited negligible toxicity at bactericidal concentrations. CONCLUSIONS: Our results demonstrated that ASP_Au NPs exhibit promise as innovative antimicrobial agents against clinical CRE.


Asunto(s)
Antiinfecciosos , Enterobacteriaceae Resistentes a los Carbapenémicos , Nanopartículas del Metal , Animales , Ratones , Oro/química , Nanopartículas del Metal/química , Edulcorantes , Aspartame , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana
11.
ACS Infect Dis ; 9(12): 2457-2470, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37944020

RESUMEN

Colistin (COL), the last line of defense in clinical medicine, is an important therapeutic option against multidrug-resistant Gram-negative bacteria. In this context, the emergence of colistin-resistant (COL-R) bacteria mediated by broad-spectrum efflux pumps, mobile genetic elements, and biofilm formation poses a significant public health concern. In response to this challenge, a novel approach of combining COL with usnic acid (UA) has been proposed in this study. UA is a secondary metabolite derived from lichens and is well-known for its anti-inflammatory properties. This study aimed to investigate the synergistic effects of UA and COL against COL-R Enterobacteriaceae both in vitro and in vivo. The exceptional synergistic antibacterial activity exhibited by the combination of COL and UA was demonstrated by performing a comprehensive set of assays, including the checkerboard assay, time-dependent killing assay, and Live/Dead bacterial cell viability assay. Furthermore, crystal violet staining and scanning electron microscopy assays revealed the inhibitory effect of this combination on the biofilm formation. Mechanistically, the combination of UA and COL exacerbated cell membrane rupture, induced DNA damage, and generated a significant amount of reactive oxygen species, which ultimately resulted in bacterial cell death. In addition, erythrocyte hemolysis and cell viability tests confirmed the biocompatibility of the combination. The evaluation of the COL/UA combination in vivo using Galleria mellonella larvae and a mouse infection model showed a significant improvement in the survival rate of the infected larvae as well as a reduction in the bacterial load in the mouse thigh muscle. These findings, for the first time, provide strong evidence for the potential application of COL/UA as an effective alternative therapeutic option to combat infections caused by COL-R Enterobacteriaceae strains.


Asunto(s)
Colistina , Enterobacteriaceae , Animales , Ratones , Colistina/farmacología , Sinergismo Farmacológico , Biopelículas
12.
Infect Drug Resist ; 16: 5697-5705, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37667809

RESUMEN

Objective: Acinetobacter baumannii is a hazardous bacterium that causes hospital-acquired nosocomial infections, and the advent of multidrug-resistant A. baumannii (MDR-AB) strains is concerning. Novel antibacterial therapeutic strategies must be developed. The biological effects of glabridin on MDR-AB were investigated in this study. Methods: The minimum inhibitory concentrations (MICs) of glabridin against eight clinical MDR-AB strains were determined using the broth microdilution technique. Crystal violet staining was used to assess biofilm development, which has significant contribution to bacterial resistance. Swarming motility was measured according to surface growth zone of MDR-AB on LB agar medium. qRT-PCR was used to evaluate the expression of quorum sensing genes abaI and abaR. Glabridin and routinely used therapeutic antimicrobial agents were tested for synergistic action using the checkerboard method. Results: According to our findings, glabridin suppressed MDR-AB growth at high doses (512-1024 µg/mL). The 1/4 MIC of glabridin significantly decreased MDR-AB biofilm formation by 19.98% (P < 0.05), inhibited MDR-AB motility by 44.27% (P < 0.05), whereas the 1/2 MIC of glabridin dramatically reduced MDR-AB biofilm development by 27.43% (P < 0.01), suppressed MDR-AB motility by 50.64% (P < 0.05). Mechanistically, glabridin substantially downregulated the expression of quorum sensing-related genes abaI and abaR by up to 39.12% (P < 0.001) and 25.19% (P < 0.01), respectively. However, no synergistic effect between glabridin and antibacterial drugs was found. Conclusion: Glabridin might be a quorum sensing inhibitor that inhibits MDR-AB biofilm development and swarming motility.

13.
J Glob Antimicrob Resist ; 35: 172-180, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37716532

RESUMEN

OBJECTIVES: The emergence of carbapenem-resistant Escherichia coli (CREC) is a global concern as its prevalence restricts treatment options and poses a considerable threat to public health. In this study, in vitro and in vivo activity of the antimicrobial peptide Octominin against CREC was investigated to reveal possible mechanisms of action. Furthermore, its safety and factors influencing its antibacterial effect were assessed. Additionally, the anti-inflammatory effects of Octominin were examined. METHODS: The antimicrobial activity of Octominin against 11 strains of CREC was determined using the broth microdilution method, growth curve, and time-kill assay. Its possible mechanism of action was unraveled using the propidium iodide and N-phenyl-1-naphthylamine fluorochrome and lipopolysaccharide-binding assays. To understand the safety and stability of Octominin, its cytotoxicity, hemolysis, and antibacterial activity under various conditions (i.e, temperature, ions) were estimated. Additionally, a Galleria mellonella infection model was utilized to evaluate the efficacy of Octominin in vivo, and qRT-PCR was performed to assess its effect on the expression of proinflammatory cytokines. RESULTS: Octominin displayed a significant antibacterial effect, with MICs of 4-8 µg/mL and MBCs of 8-16 µg/mL. Octominin exerted its antibacterial effect by disrupting bacterial membranes. Cytotoxicity and hemolysis tests demonstrated the potential application of Octominin in vivo. The G. mellonella infection model asserted the in vivo efficacy of Octominin. Furthermore, Octominin inhibited the expression of proinflammatory cytokines. Although the temperature had little effect on its the activity, serum and ions reduced activity. CONCLUSION: Octominin is a promising alternative agent with remarkable antibacterial and anti-inflammatory effects for treating infections caused by CREC.


Asunto(s)
Péptidos Antimicrobianos , Hemólisis , Humanos , Antibacterianos/farmacología , Escherichia coli , Antiinflamatorios/farmacología , Carbapenémicos/farmacología , Citocinas , Iones/farmacología
14.
Microbiol Spectr ; : e0366622, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707450

RESUMEN

Colistin is a potent antibiotic for the treatment of carbapenem-resistant Gram-negative bacteria and is considered a last-resort drug. Unfortunately, the incidence of colistin-resistant bacteria isolated from patients is continuously growing due to clinical reuse of colistin. In this study, we found that the combination of colistin and eugenol has a significant synergistic antibacterial effect and reverses the sensitivity of colistin-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae against colistin, as confirmed by checkerboard and time-kill assays. Crystal violet staining and scanning electron microscopy revealed colistin and eugenol's synergistic antibiofilm action. Concerning the synergy mechanism, the results revealed that the combination of eugenol and colistin increases membrane permeability and causes considerable membrane damage, further inhibiting bacteria synergistically. Meanwhile, up to 500 µg/mL of eugenol is non-toxic to RAW 264.7 cells, and the colistin/eugenol combination is also efficacious in vivo, as demonstrated by the Galleria mellonella infection model. Our findings indicate that the colistin/eugenol combination is a viable treatment option for colistin-resistant P. aeruginosa and K. pneumoniae clinical infections. IMPORTANCE Colistin is used as a last resort for severe infections caused by multidrug-resistant Gram-negative bacteria, however, colistin resistance is increasing. As a result, we investigated the synergistic effect of eugenol/colistin combination, and the results revealed significant antibacterial and antibiofilm action. Eugenol may help clinical colistin-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae recover their susceptibility. These findings suggest that combining eugenol and colistin may be a viable treatment option for colistin-resistant pathogen clinical infections.

15.
Microb Pathog ; 182: 106252, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37454943

RESUMEN

The type VI secretion system (T6SS) has been regarded as a late-model virulence factor widely distributed in Acinetobacter baumannii (A. baumannii). This study aimed to elucidate the clinical manifestations, the genetic background and microbiological characteristics of A. baumannii isolates causing bloodstream infection (BSI), and assessed the impact of T6SS carrying state on the clinical course. In this study, Clinical samples of A. baumannii causing BSI were collected from a teaching hospital in China from 2016 to 2020 and a retrospective cohort was conducted. Experimental strains were categorized into T6SS positive and negative groups through PCR targeting on hcp gene. The antimicrobials sensitivity test, virulence genes, biofilm formation ability, serum resistance of A. baumannii strains and Galleria mellonella infection model were investigated. Independent risk factors for T6SS+ A. baumannii BSI and Kaplan-Meier curve through follow-up survey were analyzed. A total of 182 A. baumannii strains were isolated from patients with BSI during 5 years and the medical records of all patients were retrospectively reviewed. The proportion of T6SS+ isolates was 62.64% (114/182), which exhibited significantly higher resistance rates of commonly used antibacterial drugs compared to T6SS- group. We found that T6SS+ A. baumannii strains had significantly weaker biofilm formation ability compared to T6SS- A. baumannii. Despite no difference in the positivity rate of tested virulence genes in two groups, T6SS+ strains exhibited higher resistance to the serum and increased virulence in vivo compared to T6SS- strains, indicating that T6SS is likely to enhance the survival and invasive capabilities of A. baumannii in vivo. Indwelling catheter, respiratory diseases, ICU history, white blood cell count and percentage of neutrophils increasing were independent risk factors for T6SS+ A. baumannii BSI. At last, the Kaplan-Meier curve confirmed a higher mortality rate associated with T6SS+ A. baumannii BSI, suggesting that the presence of T6SS may serve as a prognostic factor for mortality. In conclusion, our study revealed that T6SS+ A. baumannii exhibited distinct clinical features, characterized by high antimicrobial resistance and enhanced virulence, providing valuable insights for clinical treatment considerations.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Sepsis , Sistemas de Secreción Tipo VI , Humanos , Virulencia/genética , Sistemas de Secreción Tipo VI/genética , Estudios Retrospectivos , Infecciones por Acinetobacter/microbiología , Antibacterianos/farmacología , Pronóstico
16.
Int J Antimicrob Agents ; 62(3): 106899, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37354920

RESUMEN

Colistin (COL) is considered the last line of treatment against infections due to multidrug-resistant (MDR) Gram-negative bacteria (GNB). However, the increasing number of colistin-resistant (COL-R) bacteria is a great threat to public health. In this study, a strategy of combining farnesol (FAR), which has anti-inflammatory and antitumor properties, with COL to restart COL activity was proposed. The synergistic effect of FAR combined with COL against COL-R GNB in vivo and in vitro were investigated. The excellent synergistic antibacterial activity of the COL-FAR combination was confirmed by performing the checkerboard assay, time-killing assay, and LIVE/DEAD bacterial cell viability assay. Crystal violet staining and scanning electron microscopy results showed that COL-FAR prevented biofilm formation and eradicated pre-existing mature biofilm. Cytotoxicity assay showed that FAR at 64 µg/mL was not cytotoxic to RAW264.7 cells. In vivo infection experiments showed that COL-FAR increased the survival rate of infected Galleria mellonella and decreased the bacterial load in a mouse thigh infection model. These results indicate that COL-FAR is a potentially effective therapeutic option for combating COL-R GNB infections.


Asunto(s)
Colistina , Farnesol , Animales , Ratones , Colistina/farmacología , Colistina/uso terapéutico , Farnesol/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Gramnegativas , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana
17.
J Antimicrob Chemother ; 78(6): 1543-1546, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141282

RESUMEN

OBJECTIVES: To characterize a novel transposon Tn7533 carrying the tet(X2) gene in a tigecycline-resistant Acinetobacter pittii BM4623 of clinical origin. METHODS: Gene knockout and in vitro cloning were used to verify the function of tet(X2). WGS and comparative genomic analysis were used to explore the genetic characteristics and molecular evolution of tet(X2). Inverse PCR and electroporation experiments were used to evaluate the excision and integration capabilities of Tn7533. RESULTS: A. pittii BM4623 belonged to a novel ST, ST2232 (Pasteur scheme). Knockout of tet(X2) in BM4623 restored its susceptibility to tigecycline. Cloning of the tet(X2) gene into Escherichia coli DH5α and Acinetobacter baumannii ATCC 17978 resulted in 16-fold or more increases in MICs of tigecycline. Sequence analysis showed that the region upstream of tet(X2) exhibited a high degree of diversity, while there was a 145 bp conserved region downstream of tet(X2). tet(X2) in BM4623 was located on a novel composite transposon Tn7533, which also contains multiple resistance genes including blaOXA-58. Tn7533 could be excised from the chromosome to form a circular intermediate and transferred into A. baumannii ATCC 17978 by electroporation. CONCLUSIONS: Our study demonstrates that tet(X2) is a determinant conferring clinical resistance to tigecycline in Acinetobacter species. The emergence of Tn7533 may lead to the potential dissemination of tigecycline and carbapenem resistance in Acinetobacter, which requires continuous monitoring.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Acinetobacter , Humanos , Tigeciclina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Acinetobacter/genética , Acinetobacter baumannii/genética , Infecciones por Acinetobacter/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Plásmidos
18.
Virulence ; 14(1): 2214416, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37246787

RESUMEN

Cysteiniphilum is a newly discovered genus in 2017 and is phylogenetically closely related to highly pathogenic Francisella tularensis. Recently, it has become an emerging pathogen in humans. However, the complete genome sequence of genus Cysteiniphilum is lacking, and the genomic characteristics of genetic diversity, evolutionary dynamics, and pathogenicity have not been characterized. In this study, the complete genome of the first reported clinical isolate QT6929 of genus Cysteiniphilum was sequenced, and comparative genomics analyses to Francisella genus were conducted to unveil the genomic landscape and diversity of the genus Cysteiniphilum. Our results showed that the complete genome of QT6929 consists of one 2.61 Mb chromosome and a 76,819 bp plasmid. The calculated average nucleotide identity and DNA-DNA hybridization values revealed that two clinical isolates QT6929 and JM-1 should be reclassified as two novel species in genus Cysteiniphilum. Pan-genome analysis revealed genomic diversity within the genus Cysteiniphilum and an open pan-genome state. Genomic plasticity analysis exhibited abundant mobile genetic elements including genome islands, insertion sequences, prophages, and plasmids on Cysteiniphilum genomes, which facilitated the broad exchange of genetic material between Cysteiniphilum and other genera like Francisella and Legionella. Several potential virulence genes associated with lipopolysaccharide/lipooligosaccharide, capsule, and haem biosynthesis specific to clinical isolates were predicted and might contribute to their pathogenicity in humans. Incomplete Francisella pathogenicity island was identified in most Cysteiniphilum genomes. Overall, our study provides an updated phylogenomic relationship of members of the genus Cysteiniphilum and comprehensive genomic insights into this rare emerging pathogen.


Asunto(s)
Francisella tularensis , Genoma Bacteriano , Humanos , Virulencia/genética , Francisella tularensis/genética , Filogenia , Genómica , Elementos Transponibles de ADN , Variación Genética
19.
BMC Musculoskelet Disord ; 24(1): 273, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37038121

RESUMEN

BACKGROUND: The aim of this study is to report our institution's experience regarding the application of allogeneic tendons for the reconstruction of malunited lateral malleolar avulsion fractures with chronic lateral ankle instability. METHODS: This retrospective study included 34 (34 ankles) patients surgically treated for malunited lateral malleolar avulsion fractures with chronic lateral ankle instability from January 2016 to December 2019. All patients underwent allogeneic tendon reconstruction. The pre- and postoperative American Orthopaedic Foot and Ankle Society (AOFAS) scores、Karlsson Ankle Functional Scores (KAFS) and visual analogue scale (VAS) scores were used to evaluate the functional recovery of the ankle joint. The final follow-up, based on radiographic assessment, including talar tilt and anterior talar translation, was performed to evaluate the stability of the postoperative ankle joints. RESULTS: Thirty-two patients (32 ankles) returned for final clinical and radiologic follow-up at an average of 29 (range 24-35) months and 2 patients (2 ankles) were lost to follow-up. The preoperative talus inclination angle (13.6 ± 1.9°) and anterior displacement (9.6 ± 2.8 mm) were re-examined under X-ray and found to be reduced to 3.4 ± 1.2° and 3.8 ± 1.1 mm, respectively (p<0.01). The AOFAS scores increased from 58.5 ± 4.0 to 90.9 ± 3.8 and the Karlsson scores improved from 52.2 ± 3.6 to 89.8 ± 4.5, which was obviously better and the difference was statistically significant (P < 0.01). The VAS scores were significantly reduced from a preoperative mean of 6.8 ± 1.0 to 2.8 ± 0.9 postoperatively (p<0.01). CONCLUSION: In this population and with this follow-up, the application of allogeneic tendons to treat malunited lateral malleolar avulsion fractures combined with chronic lateral ankle instability appeared safe and effective.


Asunto(s)
Fracturas de Tobillo , Fracturas por Avulsión , Trasplante de Células Madre Hematopoyéticas , Inestabilidad de la Articulación , Ligamentos Laterales del Tobillo , Humanos , Articulación del Tobillo/diagnóstico por imagen , Articulación del Tobillo/cirugía , Tobillo , Estudios Retrospectivos , Ligamentos Laterales del Tobillo/cirugía , Tendones , Inestabilidad de la Articulación/diagnóstico por imagen , Inestabilidad de la Articulación/etiología , Inestabilidad de la Articulación/cirugía , Fracturas de Tobillo/diagnóstico por imagen , Fracturas de Tobillo/cirugía
20.
Microbiol Spectr ; : e0405222, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971552

RESUMEN

The continuous development of multidrug-resistant (MDR) Gram-negative bacteria poses a serious risk to public health on a worldwide scale. Colistin is used as the last-line antibiotic for the treatment of MDR pathogens, and colistin-resistant (COL-R) bacterial emergence thus has the potential to have a severe adverse impact on patient outcomes. In this study, synergistic activity was observed when colistin and flufenamic acid (FFA) were combined and used for the in vitro treatment of clinical COL-R Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii strains, as shown by checkerboard and time-kill assays. Crystal violet staining and scanning electron microscopy revealed the synergistic action of colistin-FFA against biofilms. When used to treat murine RAW264.7 macrophages, this combination did not induce any adverse toxicity. Strikingly, the survival rates of bacterially infected Galleria mellonella larvae were improved by such combination treatment, which was also sufficient to reduce the measured bacterial loads in a murine thigh infection model. Mechanistic propidium iodide (PI) staining analysis further demonstrated the ability of these agents to alter bacterial permeability in a manner that enhanced the efficacy of colistin treatment. Together, these data thus demonstrate that colistin and FFA can be synergistically combined to combat the spread of COL-R Gram-negative bacteria, providing a promising therapeutic tool with the potential to protect against COL-R bacterial infections and improve patient outcomes. IMPORTANCE Colistin is a last-line antibiotic used for the treatment of MDR Gram-negative bacterial infections. However, increasing resistance to it has been observed during clinical treatment. In this work, we assessed the efficacy of the combination of colistin and FFA for the treatment of COL-R bacterial isolates, demonstrating that the combined treatment has effective antibacterial and antibiofilm activities. Due to its low cytotoxicity and good therapeutic effects in vitro, the colistin-FFA combination may be a potential candidate for research into a resistance-modifying agent to combat infections caused by COL-R Gram-negative bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...