Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 147: 259-267, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003045

RESUMEN

Arsenic (As) pollution in soils is a pervasive environmental issue. Biochar immobilization offers a promising solution for addressing soil As contamination. The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar. However, the influence of a specific property on As immobilization varies among different studies, and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge. To enhance immobilization efficiency and reduce labor and time costs, a machine learning (ML) model was employed to predict As immobilization efficiency before biochar application. In this study, we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models. The results demonstrated that the random forest (RF) model outperformed gradient boost regression tree and support vector regression models in predictive performance. Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization. These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils. Furthermore, the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization. These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.


Asunto(s)
Arsénico , Carbón Orgánico , Aprendizaje Automático , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Arsénico/química , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Suelo/química , Modelos Químicos
2.
Environ Sci Pollut Res Int ; 31(37): 49469-49480, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39080167

RESUMEN

The properties of different organic fertilizers and their potential for stabilizing toxic metals(loids) in soil have not been fully investigated. This study characterized and evaluated three organic fertilizers from different raw materials. The mushroom residue organic fertilizer (MO) had higher C, H, and O contents and more functional groups (-OH, C-H, and C = O). Its application significantly increased pH (1.00 ~ 1.32 units), organic matter (OM) content (26.58 ~ 69.11%), and cation exchange capacity (CEC) (31.52 ~ 39.91%) of soil. MO treatments can simultaneously reduce the bioavailable TCLP-Cd and TCLP-As in soil, solving the difficulties of remediating the combined Cd and As pollution. MO treatments inhibited the migration of Cd and As from soil to plant, promoting plant growth. Redundancy analysis (RDA) revealed that metal(loid) variations in plants were related to soil properties (40.09%) and TCLP-Cd/As (44.74%). Furthermore, the toxic metals(loids) risk assessment for all organic fertilizers was at safe levels. This study provided a valuable reference for choosing organic fertilizers and presented a novel option for the "producing while remediating" of farmlands with low pollution.


Asunto(s)
Arsénico , Cadmio , Fertilizantes , Oryza , Contaminantes del Suelo , Suelo , Suelo/química
3.
Environ Sci Technol ; 57(30): 10919-10928, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37475130

RESUMEN

Artificial sweeteners have been frequently detected in the feedstocks of anaerobic digestion. As these sweeteners can lead to the shift of anaerobic microbiota in the gut similar to that caused by antibiotics, we hypothesize that they may have an antibiotic-like impact on antibiotic resistance genes (ARGs) in anaerobic digestion. However, current understanding on this topic is scarce. This investigation aimed to examine the potential impact of acesulfame, a typical artificial sweetener, on ARGs in anaerobic digestion by using metagenomics sequencing and qPCR. It was found that acesulfame increased the number of detected ARG classes and the abundance of ARGs during anaerobic digestion. The abundance of typical mobile genetic elements (MGEs) and the number of potential hosts of ARGs also increased under acesulfame exposure, suggesting the enhanced potential of horizontal gene transfer of ARGs, which was further confirmed by the correlation analysis between absolute abundances of the targeted ARGs and MGEs. The increased horizontal dissemination of ARGs may be associated with the SOS response induced by the increased ROS production, and the increased cellular membrane permeability. These findings indicate that artificial sweeteners may accelerate ARG spread through digestate disposal, thus corresponding strategies should be considered to prevent potential risks in practice.


Asunto(s)
Antibacterianos , Microbioma Gastrointestinal , Edulcorantes , Edulcorantes/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Anaerobiosis/efectos de los fármacos , Genes Bacterianos , Microbioma Gastrointestinal/efectos de los fármacos , Antibacterianos/farmacología
4.
Bioresour Technol ; 380: 129080, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37094620

RESUMEN

Cu is widely present in the feedstocks of dark fermentation, which can inhibit H2 production efficiency of the process. However, current understanding on the inhibitory mechanisms of Cu, especially the microbiological mechanism, is still lacking. This study investigated the inhibitory mechanisms of Cu2+ on fermentative hydrogen production by metagenomics sequencing. Results showed that the exposure to Cu2+ reduced the abundances of high-yielding hydrogen-producing genera (e.g. Clostridium sensu stricto), and remarkably down-regulated the genes involved in substrate membrane transport (e.g., gtsA, gtsB and gtsC), glycolysis (e.g. PK, ppgK and pgi-pmi), and hydrogen formation (e.g. pflA, fdoG, por and E1.12.7.2), leading to significant inhibition on the process performances. The H2 yield was reduced from 1.49 mol H2/mol-glucose to 0.59 and 0.05 mol H2/mol-glucose upon exposure to 500 and 1000 mg/L of Cu2+, respectively. High concentrations of Cu2+ also reduced the rate of H2 production and prolonged the H2-producing lag phase.


Asunto(s)
Reactores Biológicos , Metagenómica , Fermentación , Reactores Biológicos/microbiología , Hidrógeno , Glucosa
5.
Bioresour Technol ; 362: 127866, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36049714

RESUMEN

How to manage potato peel waste sustainably has been an issue faced by the potato industry. This work explored the feasibility of potato peel waste for biohydrogen production via dark fermentation, and investigated the effects of various inoculum enrichment methods (acid, aeration, heat-shock and base) on the process efficiency. It was observed that the hydrogen production showed a great variation when using various inoculum enrichment methods, and the aeration enriched inoculum obtained the maximum hydrogen yield of 71.0 mL/g-VSadded and VS removal of 28.9 %. Different enriched cultures also exhibited huge variations in the bacterial community structure and metabolic pathway. The highest abundance of Clostridium sensu stricto fundamentally contributed to the highest process efficiency for the fermenter inoculated with aeration treated culture. This work puts forward a promising strategy for recycling potato peel waste, and fills a gap in the optimal inoculum preparation method for biohydrogen fermentation of potato peel waste.


Asunto(s)
Solanum tuberosum , Reactores Biológicos , Clostridium/metabolismo , Fermentación , Hidrógeno/metabolismo
6.
Chemosphere ; 308(Pt 3): 136472, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36122742

RESUMEN

Cr(VI) contamination in aquatic systems has been a challenge for environmental science researchers. To environmental-friendly, stable, and efficiently remove Cr (VI), a novel layered double hydroxide was prepared through the ultrasonic-assisted co-precipitation method. The ultrasonic-assisted step prevented the Fe2+ oxidation, improved the morphology and performance, and finally, the adsorption-coupled reduction capacity and stability were enhanced. By adding U-Fe/Al-LDH (1.0 g/L) for Cr(VI) (100 mg/L), the removal rate reached 82.24%. The removal data were well fitted by the pseudo-second-order kinetic and Langmuir isotherm model. Using U-Fe/Al-LDH can be performed over a wide pH range (2-10), with a theoretical maximum removal capacity of 118.65 mg/g. The Cr(VI) with high toxicity was adsorbed and reduced to low-toxicity Cr(III). In the final phase, stable Cr(III) complex precipitates were generated. After 30 days, the dynamic leaching amounts of total Cr in used U-Fe/Al-LDH-2 were 0.1052 mg/L. Combined with the results of the influence experiment of coexisting anions and oxidants and the SO42- release experiment, the stability of the removal effect and the safety of U-Fe/Al-LDH were proved. In conclusion, U-Fe/Al-LDH-2 is a promising remediation agent and a feasible Cr(VI) removal method for the practical remediation.


Asunto(s)
Ultrasonido , Contaminantes Químicos del Agua , Adsorción , Hidróxido de Aluminio , Cromo/análisis , Hidróxidos , Hidróxido de Magnesio , Oxidantes , Contaminantes Químicos del Agua/análisis
7.
J Hazard Mater ; 416: 125785, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33838510

RESUMEN

Two major obstacles that need to be addressed for environmental application of biochar include its environmental risk and remediation performance for target pollutants. In this study, kitchen waste was taken as an example to optimize the pyrolysis temperature for biochar production based on its heavy metal risk and Cd(II) remediation performance. The results showed that the pH and ash content of kitchen waste biochar (KWB) increased; however, the yield, H/C, and N/C decreased with increasing pyrolysis temperature. Total content of heavy metals in KWB got enriched after pyrolysis, while heavy metals' risk was reduced from moderate to low due to the transformation of directly toxic heavy metal fractions into potentially and/or non-toxic fractions. The equilibrium adsorption capacities of biochar for Cd(II) ranked as follows: 49.0 mg/g (600 °C), 46.5 mg/g (500 °C), 23.6 mg/g (400 °C), 18.2 mg/g (300 °C). KWB pyrolyzed at 500 °C was found to be the most suitable for green, efficient, and economic remediation of Cd(Ⅱ) contaminated water. SEM-EDS and XPS characterization results indicated that KWB removed Cd(II) via precipitation, complexation with carboxyl/hydroxyl, ion exchange with metal cations, and coordination with π-electrons. This study puts forward a new perspective for optimizing biochar production for environmental application.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Contaminantes del Suelo , Adsorción , Carbón Orgánico , Metales Pesados/análisis , Pirólisis , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...