Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunity ; 56(10): 2206-2217, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37703879

RESUMEN

The innate immune system is critical for inducing durable and protective T cell responses to infection and has been increasingly recognized as a target for cancer immunotherapy. In this review, we present a framework wherein distinct innate immune signaling pathways activate five key dendritic cell activities that are important for T cell-mediated immunity. We discuss molecular pathways that can agonize these activities and highlight that no single pathway can agonize all activities needed for durable immunity. The immunological distinctions between innate immunotherapy administration to the tumor microenvironment versus administration via vaccination are examined, with particular focus on the strategies that enhance dendritic cell migration, interferon expression, and interleukin-1 family cytokine production. In this context, we argue for the importance of appreciating necessity vs. sufficiency when considering the impact of innate immune signaling in inflammation and protective immunity and offer a conceptual guideline for the development of efficacious cancer immunotherapies.


Asunto(s)
Neoplasias , Humanos , Citocinas , Transducción de Señal , Inmunidad Innata , Inmunoterapia , Microambiente Tumoral
2.
J Dev Behav Pediatr ; 43(5): e356-e360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34740217

RESUMEN

OBJECTIVE: Pediatric patients with autism spectrum disorder (ASD) often have coexisting feeding disorders. We hope to emphasize the significant implications that these feeding disorders can have on this patient population through a unique case of hypokalemia-induced rhabdomyolysis. METHOD: We present a unique case of a 3-year-old boy with ASD and a longstanding history of food selectivity whose routine was disrupted during the COVID-19 pandemic resulting in avoidant/restrictive food intake disorder and severe undernutrition, who presented with profound hypokalemia and was subsequently found to have elevated muscle enzymes consistent with rhabdomyolysis despite only subtle complaints of difficulty walking. RESULTS: The patient was treated with aggressive hydration, electrolyte therapy, and nasogastric tube feeds, which resulted in clinical and biochemical evidence of improvement. He was also reconnected to ASD-related care services that had lapsed during the COVID-19 pandemic. CONCLUSION: This case exemplifies the adverse impact that feeding disorders can have on patients with ASD, particularly in the setting of stressors such as a global pandemic, and is also the first documented pediatric case of rhabdomyolysis secondary to hypokalemia from severe undernutrition. It demonstrates that physicians should have a low threshold to assess for clinical and laboratory evidence of rhabdomyolysis in patients with profound hypokalemia because symptoms of hypokalemia-induced rhabdomyolysis can often be subtle, which can delay diagnosis and thereby increase the risk for life-threatening complications from extensive muscle damage.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , COVID-19 , Hipopotasemia , Desnutrición , Rabdomiólisis , Trastorno del Espectro Autista/complicaciones , COVID-19/complicaciones , Niño , Preescolar , Humanos , Hipopotasemia/inducido químicamente , Hipopotasemia/complicaciones , Masculino , Desnutrición/complicaciones , Pandemias , Rabdomiólisis/inducido químicamente , Rabdomiólisis/terapia
3.
Sci Adv ; 7(9)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627431

RESUMEN

Improper distribution of chromosomes during mitosis can contribute to malignant transformation. Higher eukaryotes have evolved a mitotic catastrophe mechanism for eliminating mitosis-incompetent cells; however, the signaling cascade and its epigenetic regulation are poorly understood. Our analyses of human cancerous tissue revealed that the NAD-dependent deacetylase SIRT2 is up-regulated in early-stage carcinomas of various organs. Mass spectrometry analysis revealed that SIRT2 interacts with and deacetylates the structural maintenance of chromosomes protein 1 (SMC1A), which then promotes SMC1A phosphorylation to properly drive mitosis. We have further demonstrated that inhibition of SIRT2 activity or continuously increasing SMC1A-K579 acetylation causes abnormal chromosome segregation, which, in turn, induces mitotic catastrophe in cancer cells and enhances their vulnerability to chemotherapeutic agents. These findings suggest that regulation of the SIRT2-SMC1A axis through deacetylation-phosphorylation permits escape from mitotic catastrophe, thus allowing early precursor lesions to overcome oncogenic stress.


Asunto(s)
Antimitóticos , Sirtuina 2 , Acetilación , Carcinogénesis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética , Humanos , Fosforilación , Sirtuina 2/genética , Sirtuina 2/metabolismo
4.
EMBO J ; 39(10): e103111, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32187724

RESUMEN

The homeostatic link between oxidative stress and autophagy plays an important role in cellular responses to a wide variety of physiological and pathological conditions. However, the regulatory pathway and outcomes remain incompletely understood. Here, we show that reactive oxygen species (ROS) function as signaling molecules that regulate autophagy through ataxia-telangiectasia mutated (ATM) and cell cycle checkpoint kinase 2 (CHK2), a DNA damage response (DDR) pathway activated during metabolic and hypoxic stress. We report that CHK2 binds to and phosphorylates Beclin 1 at Ser90/Ser93, thereby impairing Beclin 1-Bcl-2 autophagy-regulatory complex formation in a ROS-dependent fashion. We further demonstrate that CHK2-mediated autophagy has an unexpected role in reducing ROS levels via the removal of damaged mitochondria, which is required for cell survival under stress conditions. Finally, CHK2-/- mice display aggravated infarct phenotypes and reduced Beclin 1 p-Ser90/Ser93 in a cerebral stroke model, suggesting an in vivo role of CHK2-induced autophagy in cell survival. Taken together, these results indicate that the ROS-ATM-CHK2-Beclin 1-autophagy axis serves as a physiological adaptation pathway that protects cells exposed to pathological conditions from stress-induced tissue damage.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Beclina-1/metabolismo , Quinasa de Punto de Control 2/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Autofagia , Línea Celular , Modelos Animales de Enfermedad , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Ratones , Estrés Oxidativo , Fosforilación
5.
Cell Death Differ ; 27(2): 482-496, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31209362

RESUMEN

Both the stress-response protein, SIRT1, and the cell cycle checkpoint kinase, CHK2, play critical roles in aging and cancer via the modulation of cellular homeostasis and the maintenance of genomic integrity. However, the underlying mechanism linking the two pathways remains elusive. Here, we show that SIRT1 functions as a modifier of CHK2 in cell cycle control. Specifically, SIRT1 interacts with CHK2 and deacetylates it at lysine 520 residue, which suppresses CHK2 phosphorylation, dimerization, and thus activation. SIRT1 depletion induces CHK2 hyperactivation-mediated cell cycle arrest and subsequent cell death. In vivo, genetic deletion of Chk2 rescues the neonatal lethality of Sirt1-/- mice, consistent with the role of SIRT1 in preventing CHK2 hyperactivation. Together, these results suggest that CHK2 mediates the function of SIRT1 in cell cycle progression, and may provide new insights into modulating cellular homeostasis and maintaining genomic integrity in the prevention of aging and cancer.


Asunto(s)
Quinasa de Punto de Control 2/metabolismo , Sirtuina 1/metabolismo , Acetilación , Animales , Ciclo Celular , Células Cultivadas , Quinasa de Punto de Control 2/deficiencia , Humanos , Ratones , Ratones Noqueados , Fosforilación , Sirtuina 1/deficiencia
6.
Adv Wound Care (New Rochelle) ; 8(3): 91-100, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30911440

RESUMEN

Microtubules (MTs) are intracellular polymers that provide structure to the cell, serve as railways for intracellular transport, and regulate many cellular activities, including cell migration. The dynamicity and function of the MT cytoskeleton are determined in large part by its regulatory proteins, including the recently discovered MT severing enzyme Fidgetin-like 2 (FL2). Downregulation of FL2 expression with small interfering RNA (siRNA) results in a more than twofold increase in cell migration rate in vitro as well as translates into improved wound-healing outcomes in in vivo mouse models. Here we utilized a commercially available surfactant polymer dressing (SPD) as a vehicle to deliver FL2 siRNA. To this end we incorporated collagen microparticles containing FL2 siRNA into SPD (SPD-FL2-siRNA) for direct application to the injury site. Topical application of SPD-FL2 siRNA to murine models of full-thickness excision wounds and full-thickness burn wounds resulted in significant improvements in the rate and quality of wound healing, as measured clinically and histologically, compared with controls. Wound healing occurred more rapidly and with high fidelity, resulting in properly organized collagen substructure. Taken together, these findings indicate that the incorporation of FL2 siRNA into existing treatment options is a promising avenue to improve wound outcomes.

7.
Int J Biol Sci ; 14(7): 775-783, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29910687

RESUMEN

Metabolic reprogramming is a distinct hallmark in tumorigenesis. Autophagy can rewire cell metabolism by regulating intracellular homeostasis. Warburg effect is a specific energy metabolic process that allows tumor cells to metabolize glucose via glycolysis into lactate even in the presence of oxygen. Although both autophagy and Warburg effect are involved in the stress response to energy crisis in tumor cells, their molecular relationship has remained largely elusive. We found that Atg7, a key molecule involved in autophagy, inhibits the Warburg effect. Mechanistically, Atg7 binds PKM2 and prevents its Tyr-105 phosphorylation by FGFR1. Furthermore, the hyperphosphorylation of PKM2 and its induced Warburg effect due to Atg7 deficiency promote epithelial-mesenchymal transition (EMT). Conversely, overexpression of Atg7 inhibits PKM2 phosphorylation and the Warburg effect, thereby inhibiting EMT of tumor cells. Our work reveals a molecular link between Atg7 and the Warburg effect, which may provide insight into novel strategies for cancer treatment.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/metabolismo , Proteínas Portadoras/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteínas Portadoras/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Transición Epitelial-Mesenquimal/genética , Células HeLa , Humanos , Inmunoprecipitación , Proteínas de la Membrana/genética , Fosforilación , Unión Proteica , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Hormonas Tiroideas/genética , Proteínas de Unión a Hormona Tiroide
8.
Nature ; 539(7630): 575-578, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27828948

RESUMEN

Mitochondrial products such as ATP, reactive oxygen species, and aspartate are key regulators of cellular metabolism and growth. Abnormal mitochondrial function compromises integrated growth-related processes such as development and tissue repair, as well as homeostatic mechanisms that counteract ageing and neurodegeneration, cardiovascular disease, and cancer. Physiologic mechanisms that control mitochondrial activity in such settings remain incompletely understood. Here we show that the atypical Fat1 cadherin acts as a molecular 'brake' on mitochondrial respiration that regulates vascular smooth muscle cell (SMC) proliferation after arterial injury. Fragments of Fat1 accumulate in SMC mitochondria, and the Fat1 intracellular domain interacts with multiple mitochondrial proteins, including critical factors associated with the inner mitochondrial membrane. SMCs lacking Fat1 (Fat1KO) grow faster, consume more oxygen for ATP production, and contain more aspartate. Notably, expression in Fat1KO cells of a modified Fat1 intracellular domain that localizes exclusively to mitochondria largely normalizes oxygen consumption, and the growth advantage of these cells can be suppressed by inhibition of mitochondrial respiration, which suggest that a Fat1-mediated growth control mechanism is intrinsic to mitochondria. Consistent with this idea, Fat1 species associate with multiple respiratory complexes, and Fat1 deletion both increases the activity of complexes I and II and promotes the formation of complex-I-containing supercomplexes. In vivo, Fat1 is expressed in injured human and mouse arteries, and inactivation of SMC Fat1 in mice potentiates the response to vascular damage, with markedly increased medial hyperplasia and neointimal growth, and evidence of higher SMC mitochondrial respiration. These studies suggest that Fat1 controls mitochondrial activity to restrain cell growth during the reparative, proliferative state induced by vascular injury. Given recent reports linking Fat1 to cancer, abnormal kidney and muscle development, and neuropsychiatric disease, this Fat1 function may have importance in other settings of altered cell growth and metabolism.


Asunto(s)
Arterias/citología , Arterias/metabolismo , Cadherinas/metabolismo , Respiración de la Célula , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Aorta/citología , Aorta/lesiones , Aorta/metabolismo , Arterias/lesiones , Ácido Aspártico/metabolismo , Cadherinas/química , Cadherinas/deficiencia , Proliferación Celular , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Mitocondrias/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno
9.
Nat Commun ; 7: 12389, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27499244

RESUMEN

Increased activity of the tumour suppressor p53 is incompatible with embryogenesis, but how p53 is controlled is not fully understood. Differential requirements for p53 inhibitors Mdm2 and Mdm4 during development suggest that these control mechanisms are context-dependent. Artery formation requires investment of nascent endothelial tubes by smooth muscle cells (SMCs). Here, we find that embryos lacking SMC ß-catenin suffer impaired arterial maturation and die by E12.5, with increased vascular wall p53 activity. ß-Catenin-deficient SMCs show no change in p53 levels, but greater p53 acetylation and activity, plus impaired growth and survival. In vivo, SMC p53 inactivation suppresses phenotypes caused by loss of ß-catenin. Mechanistically, ß-catenin C-terminal interactions inhibit Creb-binding protein-dependent p53 acetylation and p53 transcriptional activity, and are required for artery formation. Thus in SMCs, the ß-catenin C-terminus indirectly represses p53, and this function is essential for embryogenesis. These findings have implications for angiogenesis, tissue engineering and vascular disease.


Asunto(s)
Arterias/embriología , Arterias/metabolismo , Organogénesis , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , beta Catenina/química , beta Catenina/metabolismo , Acetilación , Animales , Proliferación Celular , Supervivencia Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Genotipo , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Fenotipo , Unión Proteica , Relación Estructura-Actividad
10.
Mol Cell ; 35(4): 534-41, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19716796

RESUMEN

The molecular pathways leading from genomic instability to cellular senescence and/or cell death remain incompletely characterized. Using mouse embryonic fibroblasts with constitutively increased DNA damage due to the absence of the full-length form of the tumor suppressor Brca1 (Brca1(Delta 11/Delta 11)), we show that deletion of p53 binding protein 1 (53BP1) selectivity abrogates senescence and cell death stimulated by reduced Brca1 activity. Furthermore, the embryonic lethality induced by Brca1 mutation can be alleviated by 53BP1 deletion. Adult Brca1(Delta 11/Delta 11)53BP1(-/-) manifest constitutively high levels of genomic instability, yet age relatively normally, with a surprisingly low incidence of overall tumor formation. Together, these in vitro and in vivo data suggest that 53BP1 is specifically required for the development of premature senescence and apoptosis induced by Brca1 deficiency. These observations may have important implications for Brca1-mediated tumor formation as well as for the molecular pathway leading from genomic instability to organismal aging.


Asunto(s)
Envejecimiento/genética , Proteína BRCA1/deficiencia , Senescencia Celular/genética , Inestabilidad Genómica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Envejecimiento/metabolismo , Animales , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA1/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Senescencia Celular/efectos de la radiación , Quinasa de Punto de Control 2 , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Doxorrubicina/toxicidad , Fibroblastos/metabolismo , Fibroblastos/patología , Rayos gamma , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/efectos de la radiación , Histonas/genética , Histonas/metabolismo , Peróxido de Hidrógeno/toxicidad , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
11.
Nature ; 459(7245): 387-392, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19404261

RESUMEN

Mice deficient in the Polycomb repressor Bmi1 develop numerous abnormalities including a severe defect in stem cell self-renewal, alterations in thymocyte maturation and a shortened lifespan. Previous work has implicated de-repression of the Ink4a/Arf (also known as Cdkn2a) locus as mediating many of the aspects of the Bmi1(-/-) phenotype. Here we demonstrate that cells derived from Bmi1(-/-) mice also have impaired mitochondrial function, a marked increase in the intracellular levels of reactive oxygen species and subsequent engagement of the DNA damage response pathway. Furthermore, many of the deficiencies normally observed in Bmi1(-/-) mice improve after either pharmacological treatment with the antioxidant N-acetylcysteine or genetic disruption of the DNA damage response pathway by Chk2 (also known as Chek2) deletion. These results demonstrate that Bmi1 has an unexpected role in maintaining mitochondrial function and redox homeostasis and indicate that the Polycomb family of proteins can coordinately regulate cellular metabolism with stem and progenitor cell function.


Asunto(s)
Daño del ADN , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Quinasa de Punto de Control 2 , Daño del ADN/genética , Femenino , Masculino , Ratones , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Oxidación-Reducción/efectos de los fármacos , Complejo Represivo Polycomb 1 , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/genética , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Timo/citología , Timo/efectos de los fármacos
12.
Carcinogenesis ; 28(7): 1401-7, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17363841

RESUMEN

Environmental and genetic factors are important both in affecting life span and neoplastic transformation. We have shown previously that mice, which are homozygous for full-length breast cancer-associated gene-1 (Brca1) deletion and heterozygous for a p53-null mutation (Brca1(Delta11/Delta11)p53(+/-)), display premature aging and high frequency of spontaneous lymphoma and mammary tumor formation. To investigate the role of Brca1 in regulation of organ homeostasis and susceptibility of Brca1 deficiency to environmental carcinogens, we examined biological function of Brca1 in maintaining organ homeostasis and carcinogen-induced tumorigenesis. Brca1(Delta11/Delta11)p53(+/-) mice showed altered gastrointestinal tract homeostasis, including hyperkeratosis in the esophagus and forestomach. At 6 months of age, most mutant mice displayed hyperplasia in their forestomach and esophagus, leading to dysplasia and carcinoma formation in older animals. Brca1 mutant mice exhibited increased expression of Redd1, elevated reactive oxygen species and are more sensitive to oxidative stress induced lethality. Upon methyl-N-amylnitrosamine (MNAN) treatment, 70% Brca1 mutant mice developed tumors within 4 months whereas only 14% control animals developed tumor at the same period of the time. Our further analysis revealed that the tumorigenesis is accompanied by the loss of p53 and increased expression of a number of oncogenes, including Cyclin D1, phosphorylated form of Akt, beta-catenin, Runx-2 and c-Myc. These results suggest that Brca1 is involved in renewable organ homeostasis, linking the environmental and genetic factors in carcinogenesis and aging, and providing new insights into genomic instability in organism maintenance and tumorigenesis.


Asunto(s)
Proteína BRCA1/metabolismo , Carcinógenos Ambientales/toxicidad , Transformación Celular Neoplásica/metabolismo , Neoplasias Esofágicas/patología , Estrés Oxidativo , Neoplasias Gástricas/patología , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Proteína BRCA1/genética , Transformación Celular Neoplásica/inducido químicamente , Células Cultivadas , Neoplasias Esofágicas/inducido químicamente , Neoplasias Esofágicas/metabolismo , Ratones , Ratones Mutantes , Mutación , Nitrosaminas/toxicidad , Neoplasias Gástricas/inducido químicamente , Neoplasias Gástricas/metabolismo , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...