RESUMEN
BRAF and NRAS are oncogenes in the RAS/RAF/MEK/MAP-kinase signaling pathway. Coexistent mutations of BRAF and NRAS in a single colorectal cancer patient have always been considered mutually exclusive or at least rare. The clinical outcome of these patients remains undetermined. Herein we report a 53-year-old man harboring an NRAS Q61L mutation in his primary rectal carcinoma, who presented with a concomitant mutation of BRAF V600E in his liver metastasis biopsy 55 months after the primary CRC surgical resection. Our findings suggest that a BRAF and NRAS developed co-mutation may lead to a distinct clinicopathological progression. BRAF-mutated CRCwill not benefit from anti-RAS targeted therapy.
Asunto(s)
GTP Fosfohidrolasas/genética , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias del Recto/genética , Análisis Mutacional de ADN , GTP Fosfohidrolasas/metabolismo , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de SeñalRESUMEN
BACKGROUND: Ubiquitin-proteasome pathway (UPP) plays a very important role in the degradation of proteins. Finding novel UPP inhibitors is a promising strategy for treating multiple myeloma (MM). METHODS: Ub-YFP reporter assays were used as cellular UPP models. MM cell growth, apoptosis and overall death were evaluated with the MTS assay, Annexin V/PI dual-staining flow cytometry, poly (ADP-ribose) polymerase (PARP) cleavage, and PI uptake, respectively. The mechanism of UPP inhibition was analyzed by western blotting for ubiquitin, in vitro and cellular proteasomal and deubiquitinases (DUBs) activity assays. Cellular reactive oxygen species (ROS) were measured with H2DCFDA. RESULTS: Curcusone D, identified as a novel UPP inhibitor, causes cell growth inhibition and apoptosis in MM cells. Curcusone D induced the accumulation of poly-ubiquitin-conjugated proteins but could not inhibit proteasomal activity in vitro or in cells. Interestingly, the mono-ubiquitin level and the total cellular DUB activity were significantly downregulated following curcusone D treatment. Furthermore, curcusone D could induce ROS, which were closely correlated with DUB inhibition that could be nearly completely reversed by NAC. Finally, curcusone D and the proteasomal inhibitor bortezomib showed a strong synergistic effect against MM cells. CONCLUSIONS: Curcusone D is novel UPP inhibitor that acts via the ROS-induced inhibition of DUBs to produce strong growth inhibition and apoptosis of MM cells and synergize with bortezomib. GENERAL SIGNIFICANCE: The anti-MM molecular mechanism study of curcusone D will promote combination therapies with different UPP inhibitors against MM and further support the concept of oxidative stress regulating the activity of DUBs.
Asunto(s)
Ácidos Borónicos/uso terapéutico , Diterpenos/farmacología , Jatropha/química , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de Proteasoma/farmacología , Pirazinas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Bortezomib , Línea Celular Tumoral , Humanos , Mieloma Múltiple/patologíaRESUMEN
Denaturing gradient gel electrophoresis (DGGE) method and principal component analysis (PCA) method were used to analyze the structures of microorganism population in injection wells and production wells of a post-polymer-flooding oil reservoir in Daqing oil field. The results showed that the dominant species in injection wellhead were aerobic bacteria Pseudomonas and Acinenobacter. Facultative anaerobic bacteria Enterbacter was the dominant bacteria in near area of injection wells. Bacteria detected in production wells included Thauera, Clostridia, Pseudomonas, Petrobacter and some uncultured bacteria. Methanosaeta turned out to be the only archaea detected in injection wells, which was an aceticlastic methane-producing archaeon. Archaea detected in production wells consisted of Methanomicrobium, Methanospirillum and Methanobacterium. In general, aerobic bacteria, facultative anaerobe, and strictly anaerobic bacteria distributed successively from injection wells to production wells in this block. The dominant populations of archaea were different between injection wells and production wells, while were influenced by different environments and microbial metabolism products.