Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 349: 140901, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065267

RESUMEN

A 20-day sludge biodrying process was coupled with photocatalysis to improve biodrying efficiency and investigate the effect of photocatalysis on biodegradation. After biodrying, the moisture content in the coupled photocatalytic group (TCA) and the control group (TUCA) decreased from 63.61% to 50.82% and 52.94%, respectively, and the volatile solids content decreased from 73.18% to 63.42% and 64.39%, respectively. Neutral proteinase activity decreased by 9.38% and 28.69%, and lipase activity decreased by 6.12% and 26.17%, respectively, indicating that photocatalysis helped maintain neutral proteinase and lipase activities. The Chao1 and Shannon indices showed that photocatalysis increased fungal diversity and reduced bacterial richness and diversity. The ß diversity clustering analysis indicated that the bacterial community structure during the thermophilic phase in TCA differed from that in TUCA. The Kyoto Encyclopedia of Genes and Genomes annotation showed that photocatalysis has the potential to promote the synthesis and degradation of ketone bodies. Biodrying coupled with photocatalysis can improve the dewatering of sludge without negatively affecting biodegradation.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Biodegradación Ambiental , Péptido Hidrolasas , Lipasa
2.
J Environ Manage ; 345: 118590, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499415

RESUMEN

The efficiency of sludge dewatering is limited by extracellular polymeric substances (EPS) during biodrying. This study investigated the effect of photocatalysis-mediated EPS degradation on sludge dewatering performance during the sludge biodrying process. The photocatalysis of municipal sludge was first carried out to choose a cost-efficient catalyst. Then sludge biodrying tests were performed using TiO2-coated amendment (TCA) and uncoated amendment (TUCA) as the control. Municipal sludge photocatalysis results showed that using TiO2 could efficiently degrade carbohydrates and proteins in the EPS within 60 min. After 20-day biodrying, photocatalysis significantly promoted a reduction in the moisture content and EPS by 17.64% and 6.88%, respectively. The surface-enhanced Raman scattering (SERS) intensities of the C-C-O symmetric stretching vibration peak of D-lactose and the C-S stretching vibration peak of cysteine were significantly decreased by approximately 33.19% and 44.76%, respectively, indicating that photocatalysis indeed promoted the reduction of polysaccharides and cysteine in the EPS, especially after the thermophilic phase. The hydrophilic amino acid content decreased by 23.02%, verifying that photocatalysis could improve EPS hydrophobicity. Consequently, municipal sludge biodrying coupled with photocatalysis promotes sludge EPS degradation and enhances sludge dewaterability, improving the efficiency of sludge biodrying.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Cisteína , Agua/química
3.
Waste Manag ; 126: 30-40, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33740711

RESUMEN

This research investigated a synthetic amendment to improve composting and resource recycling of pig manure and biogas residue. We further examined whether adding a synthetic amendment impacts the microbial ecosystem in the composted materials. Three mixing ratios were used to investigate composting performance: no synthetic amendment (T0), 5% synthetic amendment (T1), and 10% synthetic amendment (T2) (T1 and T2 were measured as a wet weight ratio). There were no significant differences in the fundamental characteristics between composting products in T0 and T1. The moisture content of composting material in T0, T1, and T2 significantly decreased from a baseline of approximately 65% to 35.5%, 37.3%, and 55.9%, respectively. Meanwhile, the germination index significantly increased to 111.6%, 155.6%, and 62.3%, respectively. When an optimal proportion of synthetic amendment was added, T1 showed high degree of humification, lignocellulase activities, and effective biodegradation. Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant bacteria, while Ascomycota and Basidiomycota were the dominant fungi in all treatment groups. Amino sugar and nucleotide sugar metabolism, glycolysis, starch, and sucrose metabolism were among the primary pathways in predicted functions. The synthetic amendment can generate a mature composting product and can be reused or recycled to conserve resources.


Asunto(s)
Compostaje , Animales , Biocombustibles , Ecosistema , Estiércol , Suelo , Porcinos
4.
Bioresour Technol ; 326: 124762, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33517049

RESUMEN

Biodrying in conjunction with compound stone amendment was used to treat kitchen waste, which improved biodrying. After 16 days, the pile moisture content decreased from 68.8% to 23.0%. Lignin, cellulose and hemicellulose concentrations decreased from 104.6 mg g-1 d.b., 322.9 mg g-1 d.b. and 155.9 mg g-1 d.b., respectively, to 74.0 mg g-1 d.b., 224.8 mg g-1 d.b. and 134.5 mg g-1 d.b., respectively. The Shannon index for bacteria increased from 2.5 to 3.1, while for fungi, it decreased from 4.6 to 0.6. The relative abundances of Amino Acid Metabolism and Carbohydrate Metabolism exceeded 7%. The thermophilic phase during the process inactivated the pathogenic microorganisms, increased the bacterial diversity, decreased the fungal diversity, and potentially improved the metabolism of nutrients, including amino acids, carbohydrates, lipids and vitamins. The biomarker analysis and predicated protein sequences provide genetic evidence to elucidate why the thermophilic phase is the peak time for nutrient metabolism.


Asunto(s)
Carbohidratos , Lignina , Metabolismo de los Hidratos de Carbono , Hongos
5.
Chemosphere ; 256: 127009, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32438127

RESUMEN

Finding an economical amendment, available in a steady supply, is needed to support the biodrying industrialization. This research developed a recyclable biodrying amendment (RBA) to condition the biodrying of sewage sludge. The pilot-scale treatment (TR), which included the addition of equivalent weights of RBA and sawdust as amendments, resulted in a higher pile temperature and longer thermophilic phase compared to the control (TC), which used only sawdust as an amendment. The final moisture content levels were below 50% with both TR and TC. The heat use efficiency for water evaporation was 72.2% and 73.0% in TR and TC, respectively. The activity of α-amylase and cellulose 1,4-ß-cellobiosidase increased during the thermophilic phase, while the activity of endo-1,4-ß-glucanase and endo-1,4-ß-xylanase decreased during the thermophilic phase with both TR and TC. The fourier-transform infrared spectra indicated that adding the RBA resulted in good biodegradability of the lipids, proteins, and polysaccharides. The humic acid to fulvic acid ratio in TR and TC increased from 0.33 (TR) and 0.35 (TC) on day 0-0.46 (TR) and 0.45 (TC) on day 21, indicating the humification process. The RBA recovery rate was 95.6% and can be reused. These findings highlight that adding RBA showed satisfactory biodrying performance, reduced the amendment cost, and the biodrying product could be incinerated without energy deficit.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental , Calor , Incineración , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/economía , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...