Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Am J Pathol ; 194(6): 894-911, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403164

RESUMEN

Polycystic ovary syndrome (PCOS) is a highly heterogeneous and genetically complex endocrine disorder. Although the etiology remains mostly elusive, growing evidence suggests that abnormal changes of DNA methylation correlate well with systemic and tissue-specific dysfunctions in PCOS. Herein, a dehydroepiandrosterone-induced PCOS-like mouse model which has a similar metabolic and reproductive phenotype as human patients with PCOS was generated. It was used to experimentally validate the potential role of aberrant DNA methylation in PCOS in this study. Integrated DNA methylation and transcriptome analysis revealed the potential role of genomic DNA hypomethylation in transcription regulation of PCOS and identified several key candidate genes, including BMP4, Adcy7, Tnfaip3, and Fas, which were regulated by aberrant DNA hypomethylation. Moreover, i.p. injection of S-adenosylmethionine increased the overall DNA methylation level of PCOS-like mice and restored expression of the candidate genes to similar levels as the control, alleviating reproductive and metabolic abnormalities in PCOS-like mice. These findings provide direct evidence showing the importance of normal DNA methylation in epigenetic regulation of PCOS and potential targets for diagnosis and treatment of the disease.


Asunto(s)
Metilación de ADN , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Metilación de ADN/genética , Animales , Femenino , Ratones , Modelos Animales de Enfermedad , Transcripción Genética , Epigénesis Genética , Regulación de la Expresión Génica , Humanos , Ratones Endogámicos C57BL
2.
J Transl Med ; 22(1): 206, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414027

RESUMEN

BACKGROUND: The global cellular landscape of the tumor microenvironment (TME) combining primary and metastatic liver tumors has not been comprehensively characterized. METHODS: Based on the scRNA-seq and spatial transcriptomic data of non-tumor liver tissues (NTs), primary liver tumors (PTs) and metastatic liver tumors (MTs), we performed the tissue preference, trajectory reconstruction, transcription factor activity inference, cell-cell interaction and cellular deconvolution analyses to construct a comprehensive cellular landscape of liver tumors. RESULTS: Our analyses depicted the heterogeneous cellular ecosystems in NTs, PTs and MTs. The activated memory B cells and effector T cells were shown to gradually shift to inhibitory B cells, regulatory or exhausted T cells in liver tumors, especially in MTs. Among them, we characterized a unique group of TCF7+ CD8+ memory T cells specifically enriched in MTs that could differentiate into exhausted T cells likely driven by the p38 MAPK signaling. With regard to myeloid cells, the liver-resident macrophages and inflammatory monocyte/macrophages were markedly replaced by tumor-associated macrophages (TAMs), with TREM2+ and UBE2C+ TAMs enriched in PTs, while SPP1+ and WDR45B+ TAMs in MTs. We further showed that the newly identified WDR45B+ TAMs exhibit an M2-like polarization and are associated with adverse prognosis in patients with liver metastases. Additionally, we addressed that endothelial cells display higher immune tolerance and angiogenesis capacity, and provided evidence for the source of the mesenchymal transformation of fibroblasts in tumors. Finally, the malignant hepatocytes and fibroblasts were prioritized as the pivotal cell populations in shaping the microenvironments of PTs and MTs, respectively. Notably, validation analyses by using spatial or bulk transcriptomic data in clinical cohorts concordantly emphasized the clinical significance of these findings. CONCLUSIONS: This study defines the ontological and functional heterogeneities in cellular ecosystems of primary and metastatic liver tumors, providing a foundation for future investigation of the underlying cellular mechanisms.


Asunto(s)
Células Endoteliales , Neoplasias Hepáticas , Humanos , Ecosistema , Neoplasias Hepáticas/genética , Perfilación de la Expresión Génica , Microambiente Tumoral
3.
Yi Chuan ; 46(1): 46-62, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38230456

RESUMEN

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer accounting for 90% of cases. It is a highly invasive and deadly cancer with a gradual onset. Polypyrimidine tract-binding protein 1 (PTBP1) is an important RNA-binding protein involved in RNA metabolism and has been linked to oncogenic splicing events. While the oncogenic role of PTBP1 in HCC cells has been established, the exact mechanism of action remains unclear. This study aimed to investigate the functional connection between PTBP1 and dysregulated splicing events in HCC. Through immunoprecipitation-mass spectrometry analyses, we discovered that the proteins bound to PTBP1 were significantly enriched in the complex responsible for the alternative splicing of FGFR2 (fibroblast growth factor receptor 2). Further RNA immunoprecipitation and quantitative PCR assays confirmed that PTBP1 down-regulated the FGFR2-IIIb isoform levels and up-regulated the FGFR2-IIIc isoform levels in HCC cells, leading to a switch from FGFR2-IIIb to FGFR2-IIIc isoforms. Subsequent functional evaluations using CCK-8, transwell, and plate clone formation assays in HCC cell lines HepG2 and Huh7 demonstrated that FGFR2-IIIb exhibited tumor-suppressive effects, while FGFR2-IIIc displayed tumor-promoting effects. In conclusion, this study provides insights into the PTBP1-mediated alternative splicing mechanism in HCC progression, offering a new theoretical basis for the prevention and treatment of this malignancy. Mechanistically, the isoform switch from FGFR2-IIIb to FGFR2-IIIc promoted epithelial-mesenchymal transformation (EMT) of HCC cells and activated the FGFR cascades ERK and AKT pathways.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Isoformas de Proteínas/genética , Empalme Alternativo , ARN/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo
4.
J Biol Chem ; 300(1): 105538, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072046

RESUMEN

Histone chaperone FACT (facilitates chromatin transcription) is well known to promote chromatin recovery during transcription. However, the mechanism how FACT regulates genome-wide chromatin accessibility and transcription factor binding has not been fully elucidated. Through loss-of-function studies, we show here that FACT component Ssrp1 is required for DNA replication and DNA damage repair and is also essential for progression of cell phase transition and cell proliferation in mouse embryonic fibroblast cells. On the molecular level, absence of the Ssrp1 leads to increased chromatin accessibility, enhanced CTCF binding, and a remarkable change in dynamic range of gene expression. Our study thus unequivocally uncovers a unique mechanism by which FACT complex regulates transcription by coordinating genome-wide chromatin accessibility and CTCF binding.


Asunto(s)
Factor de Unión a CCCTC , Cromatina , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad , Chaperonas de Histonas , Animales , Ratones , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Replicación del ADN , Chaperonas de Histonas/genética , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Células 3T3 NIH , Reparación del ADN
5.
Nature ; 618(7964): 358-364, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225987

RESUMEN

The ability to switch between different lifestyles allows bacterial pathogens to thrive in diverse ecological niches1,2. However, a molecular understanding of their lifestyle changes within the human host is lacking. Here, by directly examining bacterial gene expression in human-derived samples, we discover a gene that orchestrates the transition between chronic and acute infection in the opportunistic pathogen Pseudomonas aeruginosa. The expression level of this gene, here named sicX, is the highest of the P. aeruginosa genes expressed in human chronic wound and cystic fibrosis infections, but it is expressed at extremely low levels during standard laboratory growth. We show that sicX encodes a small RNA that is strongly induced by low-oxygen conditions and post-transcriptionally regulates anaerobic ubiquinone biosynthesis. Deletion of sicX causes P. aeruginosa to switch from a chronic to an acute lifestyle in multiple mammalian models of infection. Notably, sicX is also a biomarker for this chronic-to-acute transition, as it is the most downregulated gene when a chronic infection is dispersed to cause acute septicaemia. This work solves a decades-old question regarding the molecular basis underlying the chronic-to-acute switch in P. aeruginosa and suggests oxygen as a primary environmental driver of acute lethality.


Asunto(s)
Enfermedad Aguda , Enfermedad Crónica , Genes Bacterianos , Oxígeno , Infecciones por Pseudomonas , Pseudomonas aeruginosa , ARN Bacteriano , Animales , Humanos , Oxígeno/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Fibrosis Quística/microbiología , Heridas y Lesiones/microbiología , Ubiquinona/biosíntesis , Anaerobiosis , Genes Bacterianos/genética , Sepsis/complicaciones , Sepsis/microbiología
6.
Carcinogenesis ; 44(7): 610-625, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37235794

RESUMEN

Although emerging evidence has established the roles of miRNAs in hepatocellular carcinoma (HCC), the global functional implication of miRNAs in this malignancy remains largely uncharacterized. Here, we aim to systematically identify novel miRNAs involved in HCC and clarify the function and mechanism of specific novel candidate miRNA(s) in this malignancy. Through an integrative omics approach, we identified ten HCC-associated functional modules and a collection of candidate miRNAs. Among them, we demonstrated that miR-424-3p, exhibiting strong associations with extracellular matrix (ECM), promotes HCC cells migration and invasion in vitro and facilitates HCC metastasis in vivo. We further demonstrated that SRF is a direct functional target of miR-424-3p, and is required for the oncogenic activity of miR-424-3p. Finally, we found that miR-424-3p reduces the interferon pathway by attenuating the transactivation of SRF on STAT1/2 and IRF9 genes, which in turn enhances the matrix metalloproteinases (MMPs)-mediated ECM remodeling. This study provides comprehensive functional relevance of miRNAs in HCC by an integrative omics analysis, and further clarifies that miR-424-3p in ECM functional module plays an oncogenic role via reducing the SRF-STAT1/2 axis in this malignancy.

7.
Proc Natl Acad Sci U S A ; 119(51): e2212340119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36520668

RESUMEN

A hallmark of microbial ecology is that interactions between members of a community shape community function. This includes microbial communities in human infections, such as chronic wounds, where interactions can result in more severe diseases. Staphylococcus aureus is the most common organism isolated from human chronic wound infections and has been shown to have both cooperative and competitive interactions with Pseudomonas aeruginosa. Still, despite considerable study, most interactions between these microbes have been characterized using in vitro well-mixed systems, which do not recapitulate the infection environment. Here, we characterized interactions between S. aureus and P. aeruginosa in chronic murine wounds, focusing on the role that both macro- and micro-scale spatial structures play in disease. We discovered that S. aureus and P. aeruginosa coexist at high cell densities in murine wounds. High-resolution imaging revealed that these microbes establish a patchy distribution, only occupying 5 to 25% of the wound volume. Using a quantitative framework, we identified a precise spatial structure at both the macro (mm)- and micro (µm)-scales, which was largely mediated by P. aeruginosa production of the antimicrobial 2-heptyl-4-hydroxyquinoline N-oxide, while the antimicrobial pyocyanin had no impact. Finally, we discovered that this precise spatial structure enhances S. aureus tolerance to aminoglycoside antibiotics but not vancomycin. Our results provide mechanistic insights into the biogeography of S. aureus and P. aeruginosa coinfected wounds and implicate spatial structure as a key determinant of antimicrobial tolerance in wound infections.


Asunto(s)
Coinfección , Staphylococcus aureus Resistente a Meticilina , Infecciones por Pseudomonas , Infecciones Estafilocócicas , Infección de Heridas , Humanos , Ratones , Animales , Staphylococcus aureus , Pseudomonas aeruginosa , Infección de Heridas/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Biopelículas
8.
J Exp Clin Cancer Res ; 41(1): 338, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36476255

RESUMEN

BACKGROUND: Aberrant RNA editing of adenosine-to-inosine (A-to-I) has been linked to multiple human cancers, but its role in intrahepatic cholangiocarcinoma (iCCA) remains unknown. We conducted an exome-wide investigation to search for dysregulated RNA editing that drive iCCA pathogenesis. METHODS: An integrative whole-exome and transcriptome sequencing analysis was performed to elucidate the RNA editing landscape in iCCAs. Putative RNA editing sites were validated by Sanger sequencing. In vitro and in vivo experiments were used to assess the effects of an exemplary target gene Kip1 ubiquitination-promoting complex 1 (KPC1) and its editing on iCCA cells growth and metastasis. Crosstalk between KPC1 RNA editing and NF-κB signaling was analyzed by molecular methods. RESULTS: Through integrative omics analyses, we revealed an adenosine deaminases acting on RNA 1A (ADAR1)-mediated over-editing pattern in iCCAs. ADAR1 is frequently amplified and overexpressed in iCCAs and plays oncogenic roles. Notably, we identified a novel ADAR1-mediated A-to-I editing of KPC1 transcript, which results in substitution of methionine with valine at residue 8 (p.M8V). KPC1 p.M8V editing confers loss-of-function phenotypes through blunting the tumor-suppressive role of wild-type KPC1. Mechanistically, KPC1 p.M8V weakens the affinity of KPC1 to its substrate NF-κB1 p105, thereby reducing the ubiquitinating and proteasomal processing of p105 to p50, which in turn enhances the activity of oncogenic NF-κB signaling. CONCLUSIONS: Our findings established that amplification-driven ADAR1 overexpression results in overediting of KPC1 p.M8V in iCCAs, leading to progression via activation of the NF-κB signaling pathway, and suggested ADAR1-KPC1-NF-κB axis as a potential therapeutic target for iCCA.


Asunto(s)
FN-kappa B , Humanos
9.
Front Genet ; 13: 956094, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330438

RESUMEN

Background: Cellular senescence plays a complicated and vital role in cancer development because of its divergent effects on tumorigenicity. However, the long non-coding RNAs (lncRNAs) associated with tumor senescence and their prognostic value in hepatocellular carcinoma (HCC) remain unexplored. Methods: The trans-cancer oncogene-induced senescence (OIS) signature was determined by gene set variation analysis (GSVA) in the cancer genome atlas (TCGA) dataset. The OIS-related lncRNAs were identified by correlation analyses. Cox regression analyses were used to screen lncRNAs associated with prognosis, and an optimal predictive model was created by regression analysis of the least absolute shrinkage and selection operator (LASSO). The performance of the model was evaluated by Kaplan-Meier survival analyses, nomograms, stratified survival analyses, and receiver operating characteristic curve (ROC) analyses. Gene set enrichment analysis (GSEA) and cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) were carried out to explore the functional relevance and immune cell infiltration, respectively. Results: Firstly, we examined the pan-cancer OIS signature, and found several types of cancer with OIS strongly associated with the survival of patients, including HCC. Subsequently, based on the OIS signature, we identified 76 OIS-related lncRNAs with prognostic values in HCC. We then established an optimal prognostic model based on 11 (including NRAV, AC015908.3, MIR100HG, AL365203.2, AC009005.1, SNHG3, LINC01138, AC090192.2, AC008622.2, AL139423.1, and AC026356.1) of these lncRNAs by LASSO-Cox regression analysis. It was then confirmed that the risk score was an independent and potential risk indicator for overall survival (OS) (HR [95% CI] = 4.90 [2.74-8.70], p < 0.001), which outperforms those traditional clinicopathological factors. Furthermore, patients with higher risk scores also showed more advanced levels of a proinflammatory senescence-associated secretory phenotype (SASP), higher infiltration of regulatory T (Treg) cells and lower infiltration of naïve B cells, suggesting the regulatory effects of OIS on immune microenvironment. Additionally, we identified NRAV as a representative OIS-related lncRNA, which is over-expressed in HCC tumors mainly driven by DNA hypomethylation. Conclusion: Based on 11 OIS-related lncRNAs, we established a promising prognostic predictor for HCC patients, and highlighted the potential immune microenvironment-modulatory roles of OIS in HCC, providing a broad molecular perspective of tumor senescence.

10.
Nat Commun ; 13(1): 4594, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933472

RESUMEN

Hepatocellular carcinoma (HCC) represents a paradigm of the relation between tumor microenvironment (TME) and tumor development. Here, we generate a single-cell atlas of the multicellular ecosystem of HCC from four tissue sites. We show the enrichment of central memory T cells (TCM) in the early tertiary lymphoid structures (E-TLSs) in HCC and assess the relationships between chronic HBV/HCV infection and T cell infiltration and exhaustion. We find the MMP9+ macrophages to be terminally differentiated tumor-associated macrophages (TAMs) and PPARγ to be the pivotal transcription factor driving their differentiation. We also characterize the heterogeneous subpopulations of malignant hepatocytes and their multifaceted functions in shaping the immune microenvironment of HCC. Finally, we identify seven microenvironment-based subtypes that can predict prognosis of HCC patients. Collectively, this large-scale atlas deepens our understanding of the HCC microenvironment, which might facilitate the development of new immune therapy strategies for this malignancy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estructuras Linfoides Terciarias , Carcinoma Hepatocelular/patología , Ecosistema , Humanos , Neoplasias Hepáticas/patología , Microambiente Tumoral
11.
Yi Chuan ; 44(2): 153-167, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35210216

RESUMEN

Hepatocellular carcinoma (HCC) is a common cancer worldwide. Hypoxia is an important feature of solid tumors, including HCC, and is also an important factor involved in malignancy progression. However, the identification of hypoxia-related long non-coding RNA (lncRNAs) and their prognostic value in HCC have not been systematically investigated. The aim of this study is to identify the features based on the hypoxia-related lncRNAs and evaluate their predictive value for HCC prognosis. Based on the integrated analysis of HCC transcriptome data from The Cancer Genome Atlas (TCGA), we had identified 233 potential hypoxia-related lncRNAs. We further evaluated the prognostic value of these lncRNAs and optimally established a 12-lncRNA (AC012676.1, PRR7-AS1, AC020915.2, AC008622.2, AC026401.3, MAPKAPK5-AS1, MYG1-AS1, AC015908.3, AC009275.1, MIR210HG, CYTOR and SNHG3) prognostic risk model. The Cox proportional hazards regression analysis revealed that the hypoxia risk score is a novel independent prognostic predictor for HCC patients, which outperforms the traditional clinical pathological factors. Gene set enrichment analysis (GSEA) showed that the hypoxia risk score reflects the activation of biological features related to cell proliferation and the inactivation of lipid metabolism processes. In summary, we had constructed a risk score model based on 12 hypoxia-related lncRNAs, which might be a promising prognostic predictor for HCC patients and highlight their potential roles in the prevention and treatment of this malignancy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Humanos , Hipoxia/genética , Neoplasias Hepáticas/genética , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
12.
Epigenetics Chromatin ; 14(1): 57, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34930415

RESUMEN

BACKGROUND: Dynamic changes of histone posttranslational modifications are important contexts of epigenetic reprograming after fertilization in pre-implantation embryos. Recently, lactylation has been reported as a novel epigenetic modification that regulates various cellular processes, but its role during early embryogenesis has not been elucidated. RESULTS: We examined nuclear accumulation of H3K23la, H3K18la and pan histone lactylation in mouse oocytes and pre-implantation embryos by immunofluorescence with specific antibodies. All of the three modifications were abundant in GV stage oocytes, and both H3K23la and pan histone lactylation could be detected on the condensed chromosomes of the MII oocytes, while H3K18la were not detected. After fertilization, the nuclear staining of H3K23la, H3K18la and pan histone lactylation was faint in zygotes but homogeneously stained both of the parental pronuclei. The signal remained weak in the early cleavage stage embryos and increased remarkably in the blastocyst stage embryos. Comparison of the embryos cultured in four different conditions with varying concentrations of oxygen found that H3K23la, H3K18la and pan histone lactylation showed similar and comparable staining pattern in embryos cultured in atmospheric oxygen concentration (20% O2), gradient oxygen concentration (5% O2 to 2% O2) and embryos obtained from in vivo, but the modifications were greatly reduced in embryos cultured in hypoxic condition (2% O2). In contrast, nuclear accumulation of H3K18ac or H3K23ac was not significantly affected under hypoxic condition. Moreover, the developmental rate of in vitro cultured embryo was significantly reduced by low oxygen concentration and small molecule inhibition of LDHA activity led to decreased lactate production, as well as reduced histone lactylation and compromised developmental rate. CONCLUSIONS: We provided for the first time the dynamic landscape of H3K23la, H3K18la and pan histone lactylation in oocytes and pre-implantation embryos in mice. Our data suggested that histone lactylation is subjected to oxygen concentration in the culture environment and hypoxic in vitro culture reduces histone lactylation, which in turn compromises developmental potential of pre-implantation embryos in mice.


Asunto(s)
Desarrollo Embrionario , Histonas , Animales , Blastocisto , Embrión de Mamíferos , Femenino , Ratones , Oocitos , Embarazo , Cigoto
13.
Epigenetics Chromatin ; 14(1): 55, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906203

RESUMEN

BACKGROUND: Asf1 is a well-conserved histone chaperone that regulates multiple cellular processes in different species. Two paralogous genes, Asf1a and Asf1b exist in mammals, but their role during fertilization and early embryogenesis remains to be investigated further. METHODS: We analyzed the dynamics of histone chaperone Asf1a and Asf1b in oocytes and pre-implantation embryos in mice by immunofluorescence and real-time quantitative PCR, and further investigated the role of Asf1a and Asf1b during fertilization and pre-implantation development by specific Morpholino oligos-mediated knock down approach. RESULTS: Immunofluorescence with specific antibodies revealed that both Asf1a and Asf1b were deposited in the nuclei of fully grown oocytes, accumulated abundantly in zygote and 2-cell embryonic nuclei, but turned low at 4-cell stage embryos. In contrast to the weak but definite nuclear deposition of Asf1a, Asf1b disappeared from embryonic nuclei at morula and blastocyst stages. The knockdown of Asf1a and Asf1b by specific Morpholino oligos revealed that Asf1a but not Asf1b was required for the histone H3.3 assembly in paternal pronucleus. However, knockdown of either Asf1a or Asf1b expression decreased developmental potential of pre-implantation embryos. Furthermore, while Asf1a KD severely reduced H3K56 acetylation level and the expression of Oct4 in blastocyst stage embryos, Asf1b KD almost eliminated nuclear accumulation of proliferating cell marker-PCNA in morula stage embryos. These results suggested that histone chaperone Asf1a and Asf1b play distinct roles during fertilization and pre-implantation development in mice. CONCLUSIONS: Our data suggested that both Asf1a and Asf1b are required for pre-implantation embryonic development. Asf1a regulates H3K56ac levels and Oct4 expression, while Asf1b safeguards pre-implantation embryo development by regulating cell proliferation. We also showed that Asf1a, but not Asf1b, was necessary for the assembly of histone H3.3 in paternal pronuclei after fertilization.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Chaperonas de Histonas , Histonas , Chaperonas Moleculares , Animales , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Desarrollo Embrionario , Fertilización , Chaperonas de Histonas/metabolismo , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
14.
mSystems ; 6(6): e0072021, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34874770

RESUMEN

A wide range of biological systems, from microbial swarms to bird flocks, display emergent behaviors driven by coordinated movement of individuals. To this end, individual organisms interact by recognizing their kin and adjusting their motility based on others around them. However, even in the best-studied systems, the mechanistic basis of the interplay between kin recognition and motility coordination is not understood. Here, using a combination of experiments and mathematical modeling, we uncover the mechanism of an emergent social behavior in Myxococcus xanthus. By overexpressing the cell surface adhesins TraA and TraB, which are involved in kin recognition, large numbers of cells adhere to one another and form organized macroscopic circular aggregates that spin clockwise or counterclockwise. Mechanistically, TraAB adhesion results in sustained cell-cell contacts that trigger cells to suppress cell reversals, and circular aggregates form as the result of cells' ability to follow their own cellular slime trails. Furthermore, our in silico simulations demonstrate a remarkable ability to predict self-organization patterns when phenotypically distinct strains are mixed. For example, defying naive expectations, both models and experiments found that strains engineered to overexpress different and incompatible TraAB adhesins nevertheless form mixed circular aggregates. Therefore, this work provides key mechanistic insights into M. xanthus social interactions and demonstrates how local cell contacts induce emergent collective behaviors by millions of cells. IMPORTANCE In many species, large populations exhibit emergent behaviors whereby all related individuals move in unison. For example, fish in schools can all dart in one direction simultaneously to avoid a predator. Currently, it is impossible to explain how such animals recognize kin through brain cognition and elicit such behaviors at a molecular level. However, microbes also recognize kin and exhibit emergent collective behaviors that are experimentally tractable. Here, using a model social bacterium, we engineer dispersed individuals to organize into synchronized collectives that create emergent patterns. With experimental and mathematical approaches, we explain how this occurs at both molecular and population levels. The results demonstrate how the combination of local physical interactions triggers intracellular signaling, which in turn leads to emergent behaviors on a population scale.

15.
J Cell Mol Med ; 25(24): 11142-11156, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34738311

RESUMEN

Somatic copy number alterations (CNAs) are a genomic hallmark of cancers. Among them, the chromosome 17p13.1 deletions are recurrent in hepatocellular carcinoma (HCC). Here, utilizing an integrative omics analysis, we screened out a novel tumour suppressor gene within 17p13.1, myosin heavy chain 10 (MYH10). We observed frequent deletions (~38%) and significant down-regulation of MYH10 in primary HCC tissues. Deletion or decreased expression of MYH10 was a potential indicator of poor outcomes in HCC patients. Knockdown of MYH10 significantly promotes HCC cell migration and invasion in vitro, and overexpression of MYH10 exhibits opposite effects. Further, inhibition of MYH10 markedly potentiates HCC metastasis in vivo. We preliminarily elucidated the mechanism by which loss of MYH10 promotes HCC metastasis by facilitating EGFR pathway activation. In conclusion, our study suggests that MYH10, a candidate target gene for 17p13 deletion, acts as a tumour suppressor and may serve as a potential prognostic indicator for HCC patients.


Asunto(s)
Carcinoma Hepatocelular/etiología , Deleción Cromosómica , Cromosomas Humanos Par 17 , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/etiología , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética , Transducción de Señal , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Biología Computacional , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Ratones , Pronóstico , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cell Discov ; 7(1): 76, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465742

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a broad clinical spectrum of coronavirus disease 2019 (COVID-19). The development of COVID-19 may be the result of a complex interaction between the microbial, environmental, and host genetic components. To reveal genetic determinants of susceptibility to COVID-19 severity in the Chinese population, we performed a genome-wide association study on 885 severe or critical COVID-19 patients (cases) and 546 mild or moderate patients (controls) from two hospitals, Huoshenshan and Union hospitals at Wuhan city in China. We identified two loci on chromosome 11q23.3 and 11q14.2, which are significantly associated with the COVID-19 severity in the meta-analyses of the two cohorts (index rs1712779: odds ratio [OR] = 0.49; 95% confidence interval [CI], 0.38-0.63 for T allele; P = 1.38 × 10-8; and index rs10831496: OR = 1.66; 95% CI, 1.38-1.98 for A allele; P = 4.04 × 10-8, respectively). The results for rs1712779 were validated in other two small COVID-19 cohorts in the Asian populations (P = 0.029 and 0.031, respectively). Furthermore, we identified significant eQTL associations for REXO2, C11orf71, NNMT, and CADM1 at 11q23.3, and CTSC at 11q14.2, respectively. In conclusion, our findings highlight two loci at 11q23.3 and 11q14.2 conferring susceptibility to the severity of COVID-19, which might provide novel insights into the pathogenesis and clinical treatment of this disease.

17.
Sci Adv ; 7(35)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34433556

RESUMEN

Hepatocellular carcinomas (HCCs) are characterized by frequent somatic genomic copy number alterations (CNAs), with most of them biologically unexplored. Here, we performed integrative analyses combining CNAs with the transcriptomic data to reveal the cis- and trans-effects of CNAs in HCC. We identified recurrent genomic gains of chromosome 8q, which exhibit strong trans-effects and are broadly associated with ribosome biogenesis activity. Furthermore, 8q gain-driven overexpression of ribosome biogenesis regulator (RRS1) promotes growth of HCC cells in vitro and in vivo. Mechanistically, RRS1 attenuates ribosomal stress through retaining RPL11 in the nucleolus, which, in turn, potentiates MDM2-mediated ubiquitination and degradation of p53. Clinically, higher RRS1 expression levels predict poor clinical outcomes for patients with HCC, especially in those with intact p53 Our findings established that the chromosome 8q oncogene RRS1 promotes HCC development through attenuating the RPL11-MDM2-p53 pathway and provided new potential targets for treatment of this malignancy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Proliferación Celular/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
DNA Cell Biol ; 40(8): 1087-1100, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34096799

RESUMEN

Long noncoding RNAs (lncRNAs) are emerging as crucial contributors to the development of hepatocellular carcinoma (HCC) and are involved in the stemness regulation of liver cancer stem cells (LCSCs). However, cancer cell stemness-associated lncRNAs and their relevance in prediction of clinical prognosis remain largely unexplored. In this study, through the transcriptome-wide screen, we identified a total of 136 LCSC-associated lncRNAs. We evaluated the prognostic value of these lncRNAs and optimally established an 11-lncRNA (including AC008622.2, AC015908.3, AC020915.2, AC025176.1, AC026356.2, AC099850.3, CYTOR, DDX11-AS1, HTR2A-AS1, LINC02870, and SNHG3) prognostic risk model. Multivariate analysis revealed that the risk score is an independent prognostic predictor for HCC patients, which outperforms the traditional clinical pathological factors. Gene set enrichment analysis suggested that the high-risk score reflects the alteration of pathways involved in cell cycle, oxidative phosphorylation, and metabolism. Furthermore, functional studies on SNHG12, the leading candidate of the risk lncRNAs, revealed that knockdown of SNHG12 reduces the abilities of HCC cells stemness, proliferation, migration, and invasion. In summary, we constructed a prognostic risk model based on 11 LCSC-associated lncRNAs, which might be a promising prognostic predictor for HCC patients and highlight the involvement of lncRNAs in LCSC-associated treatment strategy in clinical practice.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Autorrenovación de las Células , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/fisiología , ARN Largo no Codificante/metabolismo
19.
Front Cell Dev Biol ; 9: 664843, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113617

RESUMEN

Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine and metabolic disorder in women, which is characterized by androgen excess, ovulation dysfunction, and polycystic ovary. Although the etiology of PCOS is largely unknown, many studies suggest that aberrant DNA methylation is an important contributing factor for its pathological changes. In this study, we investigated DNA methylation characteristics and their impact on gene expression in granulosa cells obtained from PCOS patients. Transcriptome analysis found that differentially expressed genes were mainly enriched in pathways of insulin resistance, fat cell differentiation, and steroid metabolism in PCOS. Overall DNA methylation level in granulosa cells was reduced in PCOS, and the first introns were found to be the major genomic regions that were hypomethylated in PCOS. Integrated analysis of transcriptome, DNA methylation, and miRNAs in ovarian granulosa cells revealed a DNA methylation and miRNA coregulated network and identified key candidate genes for pathogenesis of PCOS, including BMP4, ETS1, and IRS1. Our study shed more light on epigenetic mechanism of PCOS and provided valuable reference for its diagnosis and treatment.

20.
Semin Cancer Biol ; 75: 136-152, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32931952

RESUMEN

Hepatocellular carcinoma(HCC) is one of the most common forms of cancer, and accounts for a high proportion of cancer-associated deaths. Growing evidences have demonstrated that non- protein-coding regions of the genome could give rise to transcripts, termed noncoding RNA (ncRNA), that form novel functional layers of the cellular activity. ncRNAs are implicated in different molecular mechanisms and functions at transcriptional, translational and post-translational levels. An increasing number of studies have demonstrated a complex array of molecular and cellular functions of ncRNAs in different stages of the HCC tumorigenesis, either in an oncogenic or tumor-suppressive manner. As a result, several pre-clinical studies have highlighted the great potentials of ncRNAs as novel biomarkers for cancer diagnosis or therapeutics in targeting HCC progression. In this review, we briefly described the characteristics of several representative ncRNAs and summarized the latest findings of their roles and mechanisms in the development of HCC, in order to better understand the cancer biology and their potential clinical applications in this malignancy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , Animales , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...