Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Insects ; 15(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667410

RESUMEN

Invasive insect pests adversely impact human welfare and global ecosystems. However, no studies have used a unified scheme to compare the range dynamics of the world's worst invasive insect pests. We investigated the future range shifts of 15 of the world's worst invasive insect pests. Although future range dynamics varied substantially among the 15 worst invasive insect pests, most exhibited large range expansions. Increases in the total habitat suitability occurred in more than ca. 85% of global terrestrial regions. The relative impacts of anthropogenic disturbance and climate variables on the range dynamics depended on the species and spatial scale. Aedes albopictus, Cinara cupressi, and Trogoderma granarium occurred four times in the top five largest potential ranges under four future climate scenarios. Anoplophora glabripennis, Aedes albopictus, and Co. formosanus were predicted to have the largest range expansions. An. glabripennis, Pl. manokwari, Co. formosanus, and So. invicta showed the largest range centroid shifts. More effective strategies will be required to prevent their range expansions. Although the strategies should be species-specific, mitigating anthropogenic disturbances and climate change will be essential to preventing future invasions. This study provides critical and novel insights for developing global strategies to combat the invasions of invasive insect pests in the future.

2.
Pest Manag Sci ; 80(6): 2785-2795, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38415910

RESUMEN

BACKGROUND: The invasion of Asian yellow-legged hornets (Vespa velutina) has significantly affected Western honey bees (Apis mellifera) and apiculture in Europe. However, the range dynamics of this hornet and its range overlap with the bees under future change scenarios have not yet been clarified. Using land-use, climate, and topographical datasets, we projected the range dynamics of this hornet and Western honey bees in Europe and the future overlap of their ranges. RESULTS: We found that climatic factors had stronger effects on the potential ranges of the hornets compared with land-use and topographical factors. A considerable range expansion of this hornet was predicted, and an increase in the overlap between this pest and the bees was primarily caused by future decreases in temperature seasonality. Additionally, we detected future range expansions of the hornet in the UK and France; future range overlap between this pest and Western honey bees in the UK, Ireland, Portugal, and France; and future overlap between the ranges of this pest and bees but not under recent conditions was mainly projected in Germany, Denmark, and the UK. CONCLUSION: Mitigating future climate change might effectively control the proliferation of the hornets and their effects on the bees. Strategies for preventing the invasion of this pest and developing European apiculture should be developed and implemented in these regions where future range overlap between them was projected. Given that climate-change scenarios may result in uncertainty in our projections, further investigation is needed to clarify future range changes of our target species. © 2024 Society of Chemical Industry.


Asunto(s)
Distribución Animal , Cambio Climático , Especies Introducidas , Avispas , Animales , Abejas/fisiología , Europa (Continente) , Avispas/fisiología , Conservación de los Recursos Naturales
3.
Pest Manag Sci ; 79(10): 3731-3739, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37194192

RESUMEN

BACKGROUND: As an invasive pest from North America, grey squirrels (GSs; Sciurus carolinensis Gmelin) are displacing native squirrels in Europe. However, the climatic niche and range dynamics of GSs in Europe remain largely unknown. Through niche and range dynamic models, we investigated climatic niche and range shifts between introduced GSs in Europe and native GSs in North America. RESULTS: GSs in North America can survive in more variable climatic conditions and have much wider climatic niche breadth than do GSs in Europe. Based on climate, the potential range of GSs in Europe included primarily Britain, Ireland, and Italy, whereas the potential range of GSs in North America included vast regions of western and southern Europe. If GSs in Europe could occupy the same climatic niche space and potential range as GSs in North America, they would occupy an area ca. 2.45 times the size of their current range. The unfilling ranges of GSs in Europe relative to those of GSs in North America were primarily in France, Italy, Spain, Croatia, and Portugal. CONCLUSION: Our observations implied that GSs in Europe have significant invasion potential, and that range projections based on their occurrence records in Europe may underestimate their invasion risk. Given that small niche shifts between GSs in Europe and in North America could lead to large range shifts, niche shifts could be a sensitive indicator in invasion risk assessment. The identified unfilling ranges of the GS in Europe should be prioritized in combating GS invasions in the future. © 2023 Society of Chemical Industry.


Asunto(s)
Especies Introducidas , Sciuridae , Animales , Europa (Continente) , Italia , Francia
4.
Insects ; 14(4)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37103131

RESUMEN

The fall webworm (Hyphantria cunea Dury) has a strong impact on agricultural systems in Europe. However, its invasive potential, which was inherited from its native niche in North America, remains unknown. Here, we investigated the climatic niche and range shifts of the fall webworm in Europe and compared them with those in native North America, then assessed the worms' invasive potential in Europe. Compared with the fall webworm in Europe, those in North America survived in more diverse climatic conditions, which was closely associated with their broader niche and larger potential ranges in Europe. If the fall webworm in Europe could exploit the native niche inherited from those in North America to adapt to climatic conditions in Europe, their potential ranges in Europe could be 5.5-fold those based on the niche as introduced in Europe. The potentially unfilled ranges of the fall webworm in Europe were mainly detected in vast regions of Europe, excluding Norway, Sweden, Finland, North Russia, Hungary, Croatia, Romania, and Ukraine, suggesting that, without strict control, these vast regions might be preferably invaded by the fall webworm in Europe in the future. Therefore, strict control against its invasion is needed. Given that small niche shifts in this invasive insect could result in large range shifts, the niche shifts represent a more sensitive indicator of invasion risk than range shifts.

5.
Ecol Evol ; 12(9): e9305, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36177110

RESUMEN

The ecological niche concept has provided insights into various areas in ecology and biogeography. Although there remains much controversy regarding whether species niches are conserved across space and time, many recent studies have suggested that invasive species conserve their climatic niche between native and introduced ranges; however, whether the climatic niche of cultivated invasive species, whose niches are strongly affected by human activities, are conserved between native and introduced ranges remains unclear. Additionally, the range dynamics of invasive species in their native and introduced regions have not been extensively studied. Here, we investigated the niche and range dynamics of Tasmanian blue gum (Eucalyptus globulus Labill.), a globally cultivated invasive tree, using ecological niche models and niche dynamic analyses. The most important factors affecting the niche changes between native and introduced Tasmanian blue gum were max temperature of the warmest month and precipitation of the wettest month. The climate niche was not conserved between introduced and native range Tasmanian blue gum; moreover, the niche area of the former was ca. 7.4 times larger than that of the latter, as introduced Tasmanian blue gum could survive in hotter, colder, wetter, and drier climates. In addition, the potential range of introduced Tasmanian blue gum was ca. 32 times larger than that of its native counterpart. Human introduction and cultivation may play a key role in the niche and range expansion of introduced Tasmanian blue gum. Given that small increases in niche area can result in large range expansions, the niche expansion of an invasive species could be used to evaluate invasion risk, which might even be more sensitive than range expansions.

6.
PeerJ ; 10: e14019, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36168438

RESUMEN

Background: Maize (Zea mays L.) is a staple crop cultivated on a global scale. However, its ability to feed the rapidly growing human population may be impaired by climate change, especially if it has low climatic niche and range lability. One important question requiring clarification is therefore whether maize shows high niche and range lability. Methods: We used the COUE scheme (a unified terminology representing niche centroid shift, overlap, unfilling and expansion) and species distribution models to study the niche and range changes between maize and its wild progenitors using occurrence records of maize, lowland teosinte (Zea mays ssp. parviglumis) and highland teosinte (Zea mays ssp. mexicana), respectively, as well as explore the mechanisms underlying the niche and range changes. Results: In contrast to maize in Mexico, maize did not conserve its niche inherited from lowland and highland teosinte at the global scale. The niche breadth of maize at the global scale was wider than that of its wild progenitors (ca. 5.21 and 3.53 times wider compared with lowland and highland teosinte, respectively). Compared with its wild progenitors, maize at global scale can survive in regions with colder, wetter climatic conditions, as well as with wider ranges of climatic variables (ca. 4.51 and 2.40 times wider compared with lowland and highland teosinte, respectively). The niche changes of maize were largely driven by human introduction and cultivation, which have exposed maize to climatic conditions different from those experienced by its wild progenitors. Small changes in niche breadth had large effects on the magnitude of range shifts; changes in niche breadth thus merit increased attention. Discussion: Our results demonstrate that maize shows wide climatic niche and range lability, and this substantially expanded its realized niche and potential range. Our findings also suggest that niche and range shifts probably triggered by natural and artificial selection in cultivation may enable maize to become a global staple crop to feed the growing population and adapting to changing climatic conditions. Future analyses are needed to determine the limits of the novel conditions that maize can tolerate, especially relative to projected climate change.


Asunto(s)
Zea mays , Humanos , México
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA