Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 197: 105691, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072546

RESUMEN

BACKGROUND: Leptochloa chinensis (L.) Nees is a troublesome weed across China in rice fields, and a suspected L. chinensis resistant population (R) that has survived the recommended field dose of cyhalofop-butyl was collected in a rice field of Hunan Province, China. In this study, we aimed to determine the acetyl-CoA carboxylase-inhibiting herbicide resistance profile of this R population and to investigate its mechanisms of resistance to cyhalofop-butyl. RESULTS: Compared with the susceptible population (S), the R population was confirmed to be 18.9-, 3.2-, 4.1-, 3.6- and 5.8- fold resistant to the APP herbicides cyhalofop-butyl, haloxyfop-P-methyl, clodinafop-propargyl, metamifop and fenoxaprop-P-ethyl, respectively. ACCase gene sequencing analysis revealed no known resistance mutations for TSR in the R population. Pretreatment with the glutathione S-transferase (GST) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) and cytochrome P450 (CYP450) inhibitor malathion reversed resistance to cyhalofop-butyl. The GST gene GSTU1 and CYP450 gene CYP707A5 were constitutively upregulated in the R population according to RNA-seq analysis and RT-qPCR verification. The molecular docking results indicated a good affinity of the active site for five APP herbicides with GSTU1 and CYP707A5. CONCLUSION: This study shows that the GSTU1 and CYP707A5 genes expressed highly in the R population may be responsible for cyhalofop-butyl resistance in L. chinensis.


Asunto(s)
Glutatión Transferasa , Herbicidas , Glutatión Transferasa/genética , Simulación del Acoplamiento Molecular , Proteínas de Plantas/genética , Poaceae/genética , Herbicidas/farmacología , Resistencia a los Herbicidas/genética , Acetil-CoA Carboxilasa/genética , Sistema Enzimático del Citocromo P-450/genética
2.
Ecotoxicol Environ Saf ; 229: 113072, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34922171

RESUMEN

Herbicide resistance to chemical herbicide is a global issue that presents an ongoing threat to grain production. Though it has been frequently implicated that the production of detoxification enzymes increased in resistance development, the mechanisms for overexpression of these genes employed by herbicide-resistant weeds remain complicated. In this study, a mesosulfuron-methyl resistant Beckmannia syzigachne population (R) was found to be cross-resistant to another herbicide pyriminobac-methyl. No known target-site mutations were detected in the R population. In contrast, the decreased uptake and enhanced metabolic rates of mesosulfuron-methyl were detected in the R than the susceptible (S) population. Two candidate ATP-binding cassette (ABC) transporter genes (ABCB25 and ABCC14) that were constitutively up-regulated in the R population were identified by RNA-sequencing and validated by RT-qPCR. Alteration of antioxidant enzyme activities and gene expressions implied that mesosulfuron-methyl-induced antioxidant defenses provoked reactive oxygen species (ROS) burst. ROS scavenger assay showed that ROS induces ABCB25 and ABCC14 expression. This study reported for the first time that ABC transporters mediated non-target-site resistance contributes to mesosulfuron-methyl resistance in a B. syzigachne population, and implicated that ROS burst might be involved in the overexpression of ABC transporter genes in weeds.


Asunto(s)
Resistencia a los Herbicidas , Herbicidas , Resistencia a los Herbicidas/genética , Herbicidas/toxicidad , Poaceae , Especies Reactivas de Oxígeno , Compuestos de Sulfonilurea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...