Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 128(17): 3361-3369, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38651632

RESUMEN

Despite being an important closo-borate in condensed phase boron chemistry, isolated [B10H10]2- is electronically unstable and has never been detected in the gas phase. Herein, we report a successful capture of this fleeting species through binding with an octamethylcalix[4]pyrrole (omC4P) molecule to form a stable gaseous omC4P·[B10H10]2- complex and its characterizations utilizing negative ion photoelectron spectroscopy (NIPES). The recorded NIPE spectrum, contributed by both omC4P and [B10H10]2-, is deconvoluted by subtracting the omC4P contribution to yield a [B10H10]2- spectrum. The obtained [B10H10]2- spectrum consists of four major bands spanning the electron binding energy (EBE) range from 1 to 5 eV, with the EBE gaps matching excellently with the energy intervals of computed high-lying occupied molecular orbitals of the [B10H10]2- dianion. This study showcases a generic method to utilize omC4P to capture unstable multiply charged anions in the gas phase for experimental determination of their electronic structures.

2.
J Chem Phys ; 160(5)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38341708

RESUMEN

We launched a combined negative ion photoelectron spectroscopy and multiscale theoretical investigation on the geometric and electronic structures of a series of acetonitrile-solvated dodecaborate clusters, i.e., B12H122-·nCH3CN (n = 1-4). The electron binding energies of B12H122-·nCH3CN are observed to increase with cluster size, suggesting their enhanced electronic stability. B3LYP-D3(BJ)/ma-def2-TZVP geometry optimizations indicate each acetonitrile molecule binds to B12H122- via a threefold dihydrogen bond (DHB) B3-H3 ⁝⁝⁝ H3C-CN unit, in which three adjacent nucleophilic H atoms in B12H122- interact with the three methyl hydrogens of acetonitrile. The structural evolution from n = 1 to 4 can be rationalized by the surface charge redistributions through the restrained electrostatic potential analysis. Notably, a super-tetrahedral cluster of B12H122- solvated by four acetonitrile molecules with 12 DHBs is observed. The post-Hartree-Fock domain-based local pair natural orbital- coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)] calculated vertical detachment energies agree well with the experimental measurements, confirming the identified isomers as the most stable ones. Furthermore, the nature and strength of the intermolecular interactions between B12H122- and CH3CN are revealed by the quantum theory of atoms-in-molecules and the energy decomposition analysis. Ab initio molecular dynamics simulations are conducted at various temperatures to reveal the great kinetic and thermodynamic stabilities of the selected B12H122-·CH3CN cluster. The binding motif in B12H122-·CH3CN is largely retained for the whole halogenated series B12X122-·CH3CN (X = F-I). This study provides a molecular-level understanding of structural evolution for acetonitrile-solvated dodecaborate clusters and a fresh view by examining acetonitrile as a real hydrogen bond (HB) donor to form strong HB interactions.

3.
Chemistry ; 30(20): e202400038, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38287792

RESUMEN

The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non-metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge-separated ionic bonding complexes with halogens omC4P+ ⋅ X- (X=F-I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X- could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X.

4.
J Phys Chem A ; 127(42): 8828-8833, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37844075

RESUMEN

Negative ion photoelectron spectra at 20 K along with ab initio [CCSD(T)] and M06-2X density functional theory calculations are reported for a series of six basic and nucleophilic pyridine derivatives with an anionic substituent [i.e., 3- and 4-PyrBX3-, where X = F, 4-t-BuC6H4, 4-MeOC6H4, and 3,5-(MeO)2C6H3]. Vertical detachment energies (VDEs) of these charge-activated reagents span from 4.50-5.85 eV and are well reproduced by M06-2X/aug-cc-pVTZ and CCSD(T)/maug-cc-pVTZ computations. Surprisingly, the VDEs are found to correlate with the SN2 reactivity of the PPh4+ salts of the substituted pyridine anions with 1-iodooctane in dichloromethane. This provides an experimental measure of the nucleophilicity of these charge-activated anions, which represent a new class of chemical reagent.

5.
J Chem Phys ; 159(3)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37466228

RESUMEN

We report a joint negative ion photoelectron spectroscopy (NIPES) and quantum chemical computational study on glycine-chloride/bromide complexes (denoted Gly·X-, X = Cl/Br) in close comparison to the previously studied Gly·I- cluster ion. Combining experimental NIPE spectra and theoretical calculations, various Gly·X- complexes were found to adopt the same types of low-lying isomers, albeit with different relative energies. Despite more congested spectral profiles for Gly·Cl- and Gly·Br-, spectral assignments were accomplished with the guidance of the knowledge learned from Gly·I-, where a larger spin-orbit splitting of iodine afforded well-resolved, recognizable spectral peaks. Three canonical plus one zwitterionic isomer for Gly·Cl- and four canonical conformers for Gly·Br- were experimentally identified and characterized in contrast to the five canonical ones observed for Gly·I- under similar experimental conditions. Taken together, this study investigates both genericity and variations in binding patterns for the complexes composed of glycine and various halides, demonstrating that iodide-tagging is an effective spectroscopic means to unravel diverse ion-molecule binding motifs for cluster anions with congested spectral bands by substituting the respective ion with iodide.

6.
iScience ; 26(8): 107306, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37520730

RESUMEN

Singlet oxygen (1O2) shows great potential for selective degradation of dyes in environmental remediation of wastewater. In this study, we showcased that 1O2 can be effectively generated from an anion complex composed of deprotonated hexafluoroisopropanol anion ([HFIP-H]‒) with hydroperoxyl radical (⋅HO2) via ultraviolet (UV) photodetachment. Electronic structure calculations and cryogenic negative ion photoelectron spectroscopy unveil critical proton transfer upon complex formation and electron ejection, effectively photoconverting prevalent triplet ground state 3O2 to long-lived excited 1O2, stabilized by nearby HFIP. Inspired by this spectroscopic study, a novel "photogeneration" strategy is proposed to produce 1O2 with the incorporation of atmospheric O2 and HFIP, acting as a catalyst. Conceptually, the designed catalytic cycle upon UV irradiation and electron injection is able to achieve different degradations of dye molecules in a controllable fashion from decolorization to complete mineralization, shedding new light on potential water purification.

7.
Sci Adv ; 9(12): eadf4309, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961895

RESUMEN

The number of water molecules in hydroxide's primary hydration shell has been long debated to be three from the interpretation of experimental data and four from theoretical studies. Here, we provide direct evidence for the presence of a fourth water molecule in hydroxide's primary hydration shell from a combined study based on high-resolution cryogenic experimental photoelectron spectroscopy and high-level quantum chemical computations. Well-defined spectra of OH-(H2O)n clusters (n = 2 to 5) yield accurate electron binding energies, which are, in turn, used as key signatures of the underlying molecular conformations. Although the smaller OH-(H2O)3 and OH-(H2O)4 clusters adopt close-lying conformations with similar electron binding energies that are hard to distinguish, the OH-(H2O)5 cluster clearly has a predominant conformation with a four-coordinated hydroxide binding motif, a finding that unambiguously determines the gas phase coordination number of hydroxide to be four.

8.
Nanoscale ; 15(12): 5786-5797, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36857667

RESUMEN

Polyoxometalates (POMs) with localized radical or open-shell metal sites have the potential to be used as transformative electronic spin based molecular qubits (MQs) for quantum computing (QC). For practical applications, MQs have to be immobilized in electronically or optically addressable arrays which introduces interactions with supports as well as neighboring POMs. Herein, we synthesized Keggin POMs with both tungsten (W) and vanadium (V) addenda atoms. Ion soft landing, a highly-controlled surface modification technique, was used to deliver mass-selected V-doped POMs to different self-assembled monolayer surfaces on gold (SAMs) without the solvent, counterions, and contaminants that normally accompany deposition from solution. Alkylthiol, perfluorinated, and carboxylic-acid terminated monolayers were employed as representative model supports on which different POM-surface and POM-POM interactions were characterized. We obtained insights into the vibrational properties of supported V-doped POMs and how they are perturbed by interactions with specific surface functional groups using infrared reflection absorption and scattering-type scanning near-field optical microscopy, as well as tip enhanced Raman spectroscopy. Different functional groups on SAMs and nanoscale heterogeneity are both shown to modulate the observed spectroscopic signatures. Spectral shifts are also found to be dependent on POM-POM interactions. The electronic structure of the V-doped POMs was determined in the gas phase using negative ion photoelectron spectroscopy and on surfaces with scanning Kelvin probe microscopy. The chemical functionality and charge transfer properties of the SAMs are demonstrated to exert an influence on the charge state and electronic configuration of supported V-doped POMs. The geometric and electronic structure of the POMs were also calculated using density functional theory. Our joint experimental and theoretical findings provide insight into how V substitution as well as POM-surface and POM-POM interactions influence the vibrational properties of POMs.

9.
J Phys Chem Lett ; 13(50): 11787-11794, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36516831

RESUMEN

We report a combined photoelectron spectroscopy and theoretical investigation of a series of size-selected hydrated closo-dodecaborate clusters B12X122-·nH2O (X = H, F, or I; n = 1-6). Distinct structural arrangements of water clusters from monomer to hexamer can be achieved by using different B12X122- bases, illustrating the evident solute specificity. Because B-H···H-O dihydrogen bonds are stronger than O···H-O hydrogen bonds in water, the added water molecules are arranged in a unified binding mode by forming highly structured water networks manipulated by B12H122-. As a comparison, the hydrated B12F122- clusters display similar water evolution for n values of 1 and 2 but different binding modes for larger clusters, while water networks in B12I122- share similarities with the free water clusters. This finding provides a consistent picture of the structural diversity of hydrogen bonding networks in microhydrated dodecaborates and a molecular-level understanding of microsolvation dynamics in aqueous borate chemistry.


Asunto(s)
Compuestos de Boro , Agua , Agua/química , Compuestos de Boro/química , Boratos , Espectroscopía de Fotoelectrones
10.
Inorg Chem ; 61(46): 18769-18778, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36356222

RESUMEN

Reaction of Li2C2 with elemental selenium in a molar ratio of 1:2 in liquid ammonia led to the formation of the ammoniate Li2[SeC2Se]·2NH3. Its crystal structure was solved and refined from high-resolution synchrotron powder diffraction data (P21/c, Z = 4). It contains the -Se-C≡C-Se- anion, unprecedented in a crystalline material, whose existence was corroborated by IR/Raman spectra and electronic-structure theory, showing an almost perfect agreement with calculated spectra. Elaborated magnetic-bottle and velocity-map imaging photoelectron spectroscopic investigations show that the -Se-C≡C-Se• radical anion can be transferred to the gas phase, where it was analyzed by NIPE (Negative Ion Photoelectron) and VMI (Velocity-Map Imaging) spectra, which correlate nicely with simulated spectra based on 2Πu → 3Σg- and 2Πu → 1Σg+ transitions including spin-orbit couplings.

11.
Nat Commun ; 13(1): 6871, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369505

RESUMEN

In eukaryotes, small nuclear RNAs (snRNAs) function in many fundamental cellular events such as precursor messenger RNA splicing, gene expression regulation, and ribosomal RNA processing. The snRNA activating protein complex (SNAPc) exclusively recognizes the proximal sequence element (PSE) at snRNA promoters and recruits RNA polymerase II or III to initiate transcription. In view that homozygous gene-knockout of SNAPc core subunits causes mouse embryonic lethality, functions of SNAPc are almost housekeeping. But so far, the structural insight into how SNAPc assembles and regulates snRNA transcription initiation remains unclear. Here we present the cryo-electron microscopy structure of the essential part of human SNAPc in complex with human U6-1 PSE at an overall resolution of 3.49 Å. This structure reveals the three-dimensional features of three conserved subunits (N-terminal domain of SNAP190, SNAP50, and SNAP43) and explains how they are assembled into a stable mini-SNAPc in PSE-binding state with a "wrap-around" mode. We identify three important motifs of SNAP50 that are involved in both major groove and minor groove recognition of PSE, in coordination with the Myb domain of SNAP190. Our findings further elaborate human PSE sequence conservation and compatibility for SNAPc recognition, providing a clear framework of snRNA transcription initiation, especially the U6 system.


Asunto(s)
ARN Nuclear Pequeño , Factores de Transcripción , Humanos , Animales , Ratones , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Microscopía por Crioelectrón , ARN Polimerasa II/metabolismo , Transcripción Genética
12.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(6): 1049-1055, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36373645

RESUMEN

Coronaviruses are a major source of emerging infectious diseases in recent years.With a variety of family members,wide host spectrum,and diverse mutant strains,coronaviruses have demonstrated unique advantages in evolution.This paper reviews the research progress of coronaviruses from genome characteristics,host animals,distribution of receptorsand gene mutations,summarizes the advantages of coronaviruses in evolution and transmission,aiming to draw attention to the prevention and control of such viruses.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Animales , Coronavirus/genética , Filogenia
13.
J Phys Chem Lett ; 13(42): 9975-9982, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36260876

RESUMEN

We report observation and photoelectron spectroscopic characterization of sodium cationization on four doubly deprotonated mononucleotide dianions Na+·[dNMP-2H]2- (N = A, G, C, or T) in the gas phase. Multiple tautomers with distinct deprotonated sites are identified, in which Na+ enables novel double deprotonation patterns and folds the resultant mononucleotide dianions. The most stable isomer for the whole family is derived from detaching one proton from the phosphate and the other from the nucleobase (amino group for N = A, G, and C, but nitrogen atom for T), whereas high-lying isomers with protons detached separately from the phosphate and the hydroxy group of sugar coexist. Particularly, an exotic deprotomer with both protons deprived from guanosine is populated as well. This work thus displays a remarkably diverse binding landscape enabled by sodium cationization, a potentially critical element in developing a general formulism to better model metal cation and nucleotide interactions.


Asunto(s)
Gases , Protones , Gases/química , Sodio/química , Conformación Molecular , Cationes , Nucleótidos , Guanosina , Fosfatos/química , Nitrógeno/química , Azúcares
14.
J Am Chem Soc ; 144(42): 19317-19325, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36166618

RESUMEN

Photochemical behaviors of pyruvic acid in multiple phases have been extensively studied, while those of its conjugate base, the pyruvate anion (CH3COCOO-, PA-) are less understood and remain contradictory in gaseous versus aqueous phases. Here in this article, we report a joint experimental and theoretical study combining cryogenic, wavelength-resolved negative ion photoelectron spectroscopy (NIPES) and high-level quantum chemical computations to investigate PA- actinic photochemistry and its dependence on microsolvation in the gas phase. PA-·nH2O (n = 0-5) clusters were generated and characterized, with their low-lying isomers identified. NIPES conducted at multiple wavelengths across the PA- actinic regime revealed the PA- photochemistry extremely sensitive to its hydration extent. While bare PA- anions exhibit active photoinduced dissociations that generate the acetyl (CH3CO-), methide (CH3-) anions, their corresponding radicals, and slow electrons, one single attached water molecule results in significant suppression with a subsequent second water being able to completely block all dissociation pathways, effectively annihilating all PA- photochemical reactivities. The underlying dissociation mechanisms of PA-·nH2O (n = 0-2) clusters are proposed involving nπ* excitation, dehydration, decarboxylation, and further CO loss. Since the photoexcited dihydrate does not have sufficient energy to overcome the full dehydration barrier before PA- could fragmentate, the PA- dissociation pathway is completely blocked, with the energy most likely released via loss of one water and internal electronic and vibrational relaxations. The insight unraveled in this work provides a much-needed critical link to connect the seemingly conflicting PA- actinic chemistry between the gas and condensed phases.


Asunto(s)
Ácido Pirúvico , Agua , Humanos , Agua/química , Estructura Molecular , Deshidratación , Aniones/química , Gases/química , Iones
15.
J Phys Chem Lett ; 13(36): 8607-8612, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36073972

RESUMEN

Size-selective, negative ion photoelectron spectroscopy in conjunction with quantum chemical calculations is employed to investigate the geometric and electronic structures of a protype system in catalytic olefin epoxidation research, that is, deprotonated hexafluoroisopropanol ([HFIP-H]-) complexed with hydrogen peroxide (H2O2). Spectral assignments and molecular electrostatic surface analyses unveil a surprising prevalent existence of a high-lying isomer with asymmetric dual hydrogen-bonding configuration that is preferably formed driven by influential direction-specific electrostatic interactions upon H2O2 approaching [HFIP-H]- anion. Subsequent inspections of molecular orbitals, charge, and spin density distributions indicate the occurrence of partial charge transfer from [HFIP-H]- to H2O2 upon hydrogen-bonding interactions. Accompanied with electron detachment, a proton transfer occurs to form the neutral complex of [HFIP·HOO•] structure. This work conspicuously illustrates the importance of directionality encoded in intermolecular interactions involving asymmetric and complex molecules, while the produced hydroperoxyl radical HOO• offers a possible new pathway in olefin epoxidation chemistry.

16.
J Chem Phys ; 157(11): 114304, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36137790

RESUMEN

The precise ionization energy of praseodymium oxide (PrO) seeded in supersonic molecular beams is measured with mass-analyzed threshold ionization (MATI) spectroscopy. A total of 33 spin-orbit (SO) states of PrO and 23 SO states of PrO+ are predicted by second-order multiconfigurational quasi-degenerate perturbation (MCQDPT2) theory. Electronic transitions from four low-energy SO levels of the neutral molecule to the ground state of the singly charged cation are identified by combining the MATI spectroscopic measurements with the MCQDPT2 calculations. The precise ionization energy is used to reassess the ionization energies and the reaction enthalpies of the Pr + O → PrO+ + e- chemi-ionization reaction reported in the literature. An empirical formula that uses atomic electronic parameters is proposed to predict the ionization energies of lanthanide monoxides, and the empirical calculations match well with available precise experimental measurements.

17.
Chem Sci ; 13(34): 9855-9860, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36128244

RESUMEN

Hydridic-to-protonic dihydrogen bonds (DHBs) are involved in comprehensive structural and energetic evolution, and significantly affect reactivity and selectivity in solution and solid states. Grand challenges exist in understanding DHBs' bonding nature and strength, and how to harness DHBs. Herein we launched a combined photoelectron spectroscopy and multiscale theoretical investigation using monohydrated closo-dodecaborate clusters B12X12 2-·H2O (X = H, F, I) to address such challenges. For the first time, a consistent and unambiguous picture is unraveled demonstrating that B-H⋯H-O DHBs are superior to the conventional B-X⋯H-O HBs, being 1.15 and 4.61 kcal mol-1 stronger than those with X = F and I, respectively. Energy decomposition analyses reveal that induction and dispersion terms make pronounced contributions resulting in a stronger B-H⋯H-O DHB. These findings call out more attention to the prominent roles of DHBs in water environments and pave the way for efficient and eco-friendly catalytic dihydrogen production based on optimized hydridic-to-protonic interactions.

18.
J Phys Chem Lett ; 13(14): 3230-3236, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35380844

RESUMEN

Intermolecular interactions such as those present in molecule···water complexes may profoundly influence the physicochemical properties of molecules. Here, we carried out an experimental-computational study on doubly deprotonated guanosine monophosphate···water clusters, [dGMP - 2H]2-·nH2O (n = 1-4), using a combination of negative anion photoelectron spectroscopy (NIPES) with molecular dynamics (MD) and quantum chemical (QM) calculations. Successive addition of water molecules to [dGMP - 2H]2- increases the experimental adiabatic detachment (ADE) and vertical detachment energy (VDE) by 0.5-0.1 eV, depending on the cluster size. In order to choose the representative conformations, we combined MD simulations with a clustering procedure to identify low energy geometries for which ADEs and VDEs were computed at the CAM-B3LYP/6-31++G(d,p) level. Our results demonstrate that the assumed approach leads to sound geometries and energetics of the studied microsolvates since the calculated ADEs and VDEs are in pretty good agreement with the experimental characteristics. The evolution of hydrogen bonding with cluster size indicates the possibility of the occurrence of proton transfer for clusters comprising a larger number of water molecules.


Asunto(s)
Guanosina , Agua , Enlace de Hidrógeno , Conformación Molecular , Espectroscopía de Fotoelectrones , Agua/química
19.
J Phys Chem Lett ; 12(50): 12005-12011, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34890205

RESUMEN

We report the observation of a small, yet remarkably stable, metal-free hexacyanodiborate dianion [B2(CN)6]2- in the gas phase. Negative ion photoelectron spectroscopy (NIPES) was employed to measure its spectra at multiple laser wavelengths, yielding a 1.9 eV electron binding energy (EBE) ─a remarkably high value of electronic stability and a ∼2.60 eV repulsive Coulomb barrier (RCB) for electron detachment. This rationalizes the observation of this dianion, although homolytic charge-separation dissociation into two [B(CN)3]•- is energetically favorable. Quantum chemical calculations demonstrate a D3d staggered conformation for both the dianion and radical monoanion, and the calculated EBE and RCB match the experimental values well. The simulated density of states spectrum reproduces all measured electronic transitions, while the simulated vibrational progressions for the ground state transition cover a much narrower EBE range compared to the experimental band, indicating appreciable auto-photodetachment via electronically excited dianion resonances.

20.
J Phys Chem Lett ; 12(45): 11022-11028, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34739238

RESUMEN

We report an observation of spin-orbit excited dipole-bound states (DBSs) in arginine-iodide complexes (Arg·I-) by using temperature-dependent, wavelength-resolved "iodide-tagging" negative ion photoelectron spectroscopy. The observed DBSs are bound to the spin-orbit excited I(2P1/2) level of the neutral Arg·I complex in zwitterionic conformations and identified based on the resonant enhancement due to spin-orbit electronic autodetachment from the I(2P1/2) DBS to the I(2P3/2) neutral ground state. The observed DBS binding energies are correlated to the dipole moments of neutral Arg·I isomers and tautomers. This work thus demonstrates a new and generic spectroscopic approach to identify ion-molecule cluster conformations based on their distinguishable dipole moments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...