Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Int J Biol Macromol ; 281(Pt 3): 136540, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39396598

RESUMEN

The early intervention of precancerous lesions of gastric cancer (PLGC) is crucial for improving the survival of patients with gastric cancer. Traditional pharmaceuticals for the treatment of PLGC are limited by side effects, thus developing innovative drug carrier that are more efficient but without the undesirable side effects is required. Here, we proposed an acid-triggered mushroom-derived ß-glucan carrier embedding doxorubicin (DOX) to circumvent drug cytotoxicity and synergistically alleviate PLGC based on the controlled conformational transformation. The triple helix ß-glucan extracted from Dictyophora rubrovolvata (DRP) loaded doxorubicin driven by pH and DMSO regulation, forming two rattan ball-like nanoparticles (DRP-DOX(pH) and DRP-DOX(DMSO)) via its collapse and recombination of triple-helix conformation. The findings revealed that DRP-DOXs achieved acid-triggerable and sustained drug delivery with an average particle size of 500 nm and 550 nm. In vitro evaluation of GES-1 cells showed DRP-DOXs reduced reactive oxygen species (ROS) production and altered mitochondrial membrane potential. Compared to DRP-DOX(DMSO) and DRP, DRP-DOX(pH) could more effectively downregulate cellular oxidative stress and inflammation to eventually alleviate PLGC, by regulating the p53 and PI3K pathways to mitigate gastric mucosa damage. Consequently, the nature-derived ß-glucan delivery nanovesicle holds great promising applications in reducing drug toxicity and suppressing the development of PLGC.

2.
J Chem Phys ; 161(13)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39351942

RESUMEN

Lithium-sulfur batteries hold great promise as energy storage systems, but the shuttle effect of lithium polysulfides (LiPS) and large volume variation limit their capacity and cycle life. We have developed CoFe alloy wrapped in N-doped porous carbon spheres (e-CF@NC) with a core-shell structure through simple copolymerization and pyrolysis. The nitrogen-doped porous carbon shell provides electron and ion transport channels and more active sites for electrolyte ion adsorption. The high chemically stable carbon can limit the segregation of polysulfides, further improving the battery cycling stability. Besides, the inside CoFe alloy particles catalyze the conversion between LiPS and Li2S, speeding up reaction kinetics and reducing solvation of active sites. Consequently, lithium-sulfur batteries with e-CF@NC-2 as the cathode display a high initial specific capacity of 1146 mA h g-1 at 0.1 C, excellent rate performance (891 mA h g-1 at 1 C, 741 mA h g-1 at 2 C), and satisfied cycle stability (average capacity decay rate of 0.033% per cycle at 1 C for 300 cycles), demonstrating significant application potential.

3.
J Cardiothorac Surg ; 19(1): 600, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385190

RESUMEN

BACKGROUND: Cardiac lipoma, a seldom-encountered benign tumor positioned beneath the endocardium, has the potential to impair electrophysiological functions. Diagnosis is principally based on imaging modalities. The uniqueness of this case lies in the tumor's extension both internally and externally within the right atrium, rendering it of special interest. From a clinical standpoint, surgical removal is commonly advocated, wherein early intervention is pivotal in improving patients' long-term prognoses. CASE PRESENTATION: A 35-year-old male was admitted to the hospital for treatment subsequent to the identification of a cardiac mass two days prior. Initial diagnostic assessments, encompassing CT scans and echocardiography, identified a space-occupying lesion within the heart. The patient underwent surgical excision of the cardiac tumor, utilizing mild hypothermic extracorporeal circulation via femoral vessel access. Intraoperative findings revealed adipose-like tissue of a "dumbbell-shaped" configuration situated both within and external to the right atrium, measuring approximately 8 cm*9 cm internally and 7 cm*6 cm externally, with the extracardiac mass being marginally larger. Postoperative pathological analysis confirmed a cardiac lipoma diagnosis. A follow-up echocardiogram conducted three months post-surgery exhibited no notable abnormalities. The patient is under continuous observation to monitor for any recurrence or potential long-term complications. CONCLUSION: In this case report, we detail with precision a rare cardiac pathology manifested by an expansive infiltrative lipoma that pervades the endocardial and epicardial layers of the right atrium. After thorough preoperative diagnostic workup and evaluation, we contend that surgical intervention represents the optimal therapeutic approach for managing such conditions, with the goal of preemptively reducing the likelihood of cardiac compression or intracardiac obstruction.


Asunto(s)
Atrios Cardíacos , Neoplasias Cardíacas , Lipoma , Humanos , Lipoma/cirugía , Lipoma/diagnóstico por imagen , Lipoma/diagnóstico , Lipoma/patología , Neoplasias Cardíacas/cirugía , Neoplasias Cardíacas/diagnóstico , Neoplasias Cardíacas/diagnóstico por imagen , Neoplasias Cardíacas/patología , Masculino , Adulto , Atrios Cardíacos/diagnóstico por imagen , Ecocardiografía , Tomografía Computarizada por Rayos X , Procedimientos Quirúrgicos Cardíacos/métodos , Invasividad Neoplásica
4.
Microb Pathog ; : 107052, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39442821

RESUMEN

The abuse of antibiotics has led to the widespread emergence of multi-drug resistant bacteria. Phage therapy holds promise for enhancing antibacterial and anti-infection strategies. Traditional bacteriophage therapy employs phage preparations as an alternative to antibiotics for the eradication of bacteria, aiming to achieve the desired clinical outcomes. Modification of phage by transgene or chemical modification overcomes the limitations of traditional bacteriophage therapy, including host spectrum modification, bacterial resistance reversal, antigen presentation, and drug targeted delivery, and thus broadens the application field of phage. This article summarizes the progress of engineered phages in the fields of antibacterial, anti-infective, and anti-tumor therapy. It emphasizes the advantages of engineered phages in antibacterial and anti-tumor treatment, and discusses the widespread potential of phage-based modular design as multifunctional biopharmaceuticals, drug carriers, and other applications.

5.
Arthritis Res Ther ; 26(1): 183, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39444000

RESUMEN

BACKGROUND: Neuropsychiatric systemic lupus erythematosus (NPSLE) often manifests as cognitive deterioration, with activated microglia and blood-brain barrier (BBB) disruption implicated in these neurological complications. Wnt-inhibitory factor-1 (WIF-1), a secreted protein, has been detected in the cerebrospinal fluid (CSF) of NPSLE patients. However, the contribution of WIF-1 in contributing to lupus cognitive impairment remains poorly understood. METHODS: Using MRL/MpJ-Faslpr (MRL/lpr) lupus-prone mice and TLR7 agonist imiquimod (IMQ)-induced lupus mice, recombinant WIF-1 protein (rWIF-1) and adeno-associated virus (AAV) encoding sh-WIF-1 were administered via intracerebroventricular injection. Behavioral tests, histopathological examinations, flow cytometry, and molecular biology techniques were employed to investigate the underlying mechanisms. RESULTS: Microinjection of rWIF-1 exacerbated cognitive deficits and mood abnormalities, increased BBB leakage and neuronal degeneration, and caused aberrant activation of microglia and synaptic pruning in the hippocampus. Conversely, lupus mice injected with AAV-shWIF-1 exhibited significant remission. In vitro, rWIF-1 induced overactivation of microglia with an increased CD86+ pro-inflammatory subpopulation, upregulated phagocytic activity, and excessive synaptic engulfment, contributing to increased BBB permeability. Furthermore, WIF-1 exerted its biological effects through the CRYAB/STAT4 pathway, transcriptionally decreasing SHH production. We also identified that symmetric dimethylarginine (SDMA) could alleviate rWIF-1-induced microglial activation and BBB damage, thereby restoring SHH levels. CONCLUSIONS: In conclusion, WIF-1 exacerbates lupus-induced cognitive dysfunction in mice by triggering aberrant microglial activation and BBB disruption through the CRYAB/STAT4-SHH axis, highlighting the potential therapeutic effects of SDMA for the treatment of NPSLE.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Vasculitis por Lupus del Sistema Nervioso Central , Animales , Femenino , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Barrera Hematoencefálica/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Vasculitis por Lupus del Sistema Nervioso Central/genética , Vasculitis por Lupus del Sistema Nervioso Central/fisiopatología , Ratones Endogámicos MRL lpr , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología
6.
Pract Lab Med ; 40: e00413, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38974938

RESUMEN

Background: D-dimer at a low level is important evidence for excluding the onset and progression of thrombosis. It is readily detectable and yields rapid results, although significant variability exists among different detection systems. Our study aims to enhance the consistency across various detection systems. Methods: Twelve detection systems were included in our study. We sought to address this inconsistency by using various calibrators (two supplied by manufacturers and two comprising pooled human plasma diluted with different diluents) to standardize D-dimer measurements. We categorized the data into three groups according to D-dimer concentration levels: low (≤0.5 mg/L), medium (>0.5 mg/L - <3 mg/L), and high (≥3 mg/L). We then analyzed the data focusing on range, consistency, comparability, negative coincidence rate, and false negative rate. Results: Calibrating with pooled human plasma led to narrower result ranges in the low and medium groups (P < 0.05). In the low group, consistency improved from weak to strong (ICC 0.4-0.7, P﹤0.05), while it remained excellent in the other groups and overall (ICCï¹¥0.75, P﹤0.05). The percentage of pairwise comparability increased in both the low and high groups. Additionally, there was an increase in the negative coincidence rate. Conclusion: These findings demonstrate that uniform calibration of D-dimer can significantly enhance the consistency of results across different detection systems.

7.
Mil Med Res ; 11(1): 46, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992778

RESUMEN

BACKGROUND: Subarachnoid hemorrhage (SAH) is a subtype of hemorrhagic stroke characterized by high mortality and low rates of full recovery. This study aimed to investigate the epidemiological characteristics of SAH between 1990 and 2021. METHODS: Data on SAH incidence, mortality, and disability-adjusted life-years (DALYs) from 1990 to 2021 were obtained from the Global Burden of Disease Study (GBD) 2021. Estimated annual percentage changes (EAPCs) were calculated to evaluate changes in the age-standardized rate (ASR) of incidence and mortality, as well as trends in SAH burden. The relationship between disease burden and sociodemographic index (SDI) was also analyzed. RESULTS: In 2021, the incidence of SAH was found to be 37.09% higher than that in 1990; however, the age-standardized incidence rates (ASIRs) showed a decreased [EAPC: -1.52; 95% uncertainty interval (UI) -1.66 to -1.37]. Furthermore, both the number and rates of deaths and DALYs decreased over time. It was observed that females had lower rates compared to males. Among all regions, the high-income Asia Pacific region exhibited the highest ASIR (14.09/100,000; 95% UI 12.30/100,000 - 16.39/100,000) in 2021, with an EPAC for ASIR < 0 indicating decreasing trend over time for SAH ASIR. Oceania recorded the highest age-standardized mortality rates (ASMRs) and age-standardized DALYs rates among all regions in 2021 at values of respectively 8.61 (95% UI 6.03 - 11.95) and 285.62 (95% UI 209.42 - 379.65). The burden associated with SAH primarily affected individuals aged between 50 - 69 years old. Metabolic risks particularly elevated systolic blood pressure were identified as the main risk factors contributing towards increased disease burden associated with SAH when compared against environmental or occupational behavioral risks evaluated within the GBD framework. CONCLUSIONS: The burden of SAH varies by gender, age group, and geographical region. Although the ASRs have shown a decline over time, the burden of SAH remains significant, especially in regions with middle and low-middle SDI levels. High systolic blood pressure stands out as a key risk factor for SAH. More specific supportive measures are necessary to alleviate the global burden of SAH.


Asunto(s)
Carga Global de Enfermedades , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/epidemiología , Masculino , Femenino , Incidencia , Persona de Mediana Edad , Anciano , Adulto , Carga Global de Enfermedades/tendencias , Años de Vida Ajustados por Discapacidad/tendencias , Salud Global/estadística & datos numéricos , Anciano de 80 o más Años
8.
Nat Commun ; 15(1): 5651, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969644

RESUMEN

The bulk photovoltaic effect (BPVE) in non-centrosymmetric materials has attracted significant attention in recent years due to its potential to surpass the Shockley-Queisser limit. Although these materials are strictly constrained by symmetry, progress has been made in artificially reducing symmetry to stimulate BPVE in wider systems. However, the complexity of these techniques has hindered their practical implementation. In this study, we demonstrate a large intrinsic photocurrent response in centrosymmetric topological insulator Ag2Te, attributed to the surface photogalvanic effect (SPGE), which is induced by symmetry reduction of the surface. Through diverse spatially-resolved measurements on specially designed devices, we directly observe that SPGE in Ag2Te arises from the difference between two opposite photocurrent flows generated from the top and bottom surfaces. Acting as an efficient SPGE material, Ag2Te demonstrates robust performance across a wide spectral range from visible to mid-infrared, making it promising for applications in solar cells and mid-infrared detectors. More importantly, SPGE generated on low-symmetric surfaces can potentially be found in various systems, thereby inspiring a broader range of choices for photovoltaic materials.

9.
J Cell Mol Med ; 28(13): e18510, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953409

RESUMEN

In recent years, inflammatory disorders have emerged as a significant concern for human health. Through ongoing research on anti-inflammatory agents, alpinetin has shown promising anti-inflammatory properties, including involvement in epigenetic modification pathways. As a crucial regulator of epigenetic modifications, Mecp2 may play a role in modulating the epigenetic effects of alpinetin, potentially impacting its anti-inflammatory properties. To test this hypothesis, two key components, p65 (a member of NF-KB family) and p300 (a type of co-activator), were screened by the expression profiling microarray, which exhibited a strong correlation with the intensity of LPS stimulation in mouse macrophages. Meanwhile, alpinetin demonstrates the anti-inflammatory properties through its ability to disrupt the synthesis of p65 and its interaction with promoters of inflammatory genes, yet it did not exhibit similar effects on p300. Additionally, Mecp2 can inhibit the binding of p300 by attaching to the methylated inflammatory gene promoter induced by alpinetin, leading to obstacles in promoter acetylation and subsequently impacting the binding of p65, ultimately enhancing the anti-inflammatory capabilities of alpinetin. Similarly, in a sepsis mouse model, it was observed that homozygotes overexpressing Mecp2 showed a greater reduction in organ damage and improved survival rates compared to heterozygotes when administered by alpinetin. However, blocking the expression of DNA methyltransferase 3A (DNMT3A) resulted in the loss of Mecp2's anti-inflammatory assistance. In conclusion, Mecp2 may augment the anti-inflammatory effects of alpinetin through epigenetic 'crosstalk', highlighting the potential efficacy of a combined therapeutic strategy involving Mecp2 and alpinetin for anti-inflammatory intervention.


Asunto(s)
Antiinflamatorios , Epigénesis Genética , Flavanonas , Proteína 2 de Unión a Metil-CpG , Regiones Promotoras Genéticas , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Animales , Flavanonas/farmacología , Epigénesis Genética/efectos de los fármacos , Ratones , Antiinflamatorios/farmacología , Células RAW 264.7 , Metilación de ADN/efectos de los fármacos , Lipopolisacáridos/farmacología , Factor de Transcripción ReIA/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/genética , Sepsis/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/genética , Inflamación/metabolismo , ADN Metiltransferasa 3A/metabolismo , Masculino , Proteína p300 Asociada a E1A/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética
10.
Metabolomics ; 20(4): 76, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002042

RESUMEN

BACKGROUND: Aortic dissection (AD) significantly threated human cardiovascular health, extensive clinical-scientific research programs have been executed to uncover the pathogenesis and prevention. Unfortunately, no specific biomarker was identified for the causality or development of human AD. AIM OF REVIEW: Metabolomics, a high-throughput technique capable of quantitatively detecting metabolites, holds considerable promise in discovering specific biomarkers and unraveling the underlying pathways involved. Aiming to provide a metabolite prediction in human AD, we collected the metabolomics data from 2003 to 2023, and diligently scrutinized with the online system MetaboAnalyst 6.0. KEY SCIENTIFIC CONCEPTS OF REVIEW: Based on the data obtained, we have concluded the metabolic dynamics were highly correlated with human AD. Such metabolites (choline, serine and uridine) were frequently involved in the AD. Besides, the pathways, including amino acids metabolism and lipids metabolism, were also dysregulated in the disease. Due to the current limitation of metabolism analysis, the integrative omics data including genomics, transcriptomics, and proteomics were required for developing the specific biomarker for AD.


Asunto(s)
Disección Aórtica , Biomarcadores , Metabolómica , Humanos , Biomarcadores/metabolismo , Disección Aórtica/metabolismo , Disección Aórtica/diagnóstico , Metabolómica/métodos , Metaboloma
11.
Environ Geochem Health ; 46(6): 197, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696118

RESUMEN

Micro/nanoplastics (MNPs) are emerging as environmental pollutants with potential threats to human health. The accumulation of MNPs in the body can cause oxidative stress and increase the risk of cardiovascular disease (CVD). With the aim to systematically evaluate the extent of MNPs-induced oxidative damage and serum biochemical parameters in rats and mice, a total of 36 eligible articles were included in this meta-analysis study. The results reported that MNPs can significantly increase the levels of oxidants such as reactive oxygen species (ROS) and malondialdehyde (MDA) (P < 0.05), and resulted in notable increase in serum biochemical parameters including aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (P < 0.05). Conversely, MNPs significantly reduced levels of antioxidants such as superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT) (P < 0.05). Subgroup analysis revealed that smaller MNPs with oral administration and prolonged treatment, were associated with more pronounced oxidative stress and enhanced serum biochemical parameters alteration. In addition, after affected by MNPs, the levels of ALT and AST in liver group (SMD = 2.26, 95% CI = [1.59, 2.94] and SMD = 3.10, 95% CI = [1.25, 4.94]) were higher than those in other organs. These comprehensive results provide a scientific foundation for devising strategies to prevent MNPs-induced damage, contributing to solution of this environmental and health challenge.


Asunto(s)
Estrés Oxidativo , Animales , Ratones , Ratas , Alanina Transaminasa/sangre , Antioxidantes/metabolismo , Aspartato Aminotransferasas/sangre , Contaminantes Ambientales/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Malondialdehído/sangre , Microplásticos/toxicidad , Nanopartículas , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
12.
Clin Chim Acta ; 561: 119721, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38796050

RESUMEN

BACKGROUND AND OBJECTIVE: Deep vein thrombosis (DVT) is a common complication after trauma and mostly without specific symptoms. Timely diagnosis and early appropriate treatment measures can prevent further development of thrombosis for patients with traumatic lower extremity fractures. Although extracellular vesicles (EVs) are confirmed as promising disease biomarkers, little is known about the role of altered levels and composition in the diagnosis of post-traumatic DVT. METHOD: The levels of circulating EVs subgroups were measured using flow cytometry. Isolated EVs were characterized and subjected to proteomics analysis to screen for differentially expressed proteins (DEPs) between DVT and non-DVT patients. Regularized logistic regression analysis based on L2 penalty terms using R's caret package was applied to build a model for DVT diagnosis. RESULTS: Compared to non-DVT patients, DVT patients had higher circulating hepatocyte-derived EVs (hEVs) with good predictive value for post-traumatic DVT diagnosis. The results of the proteomic analysis showed that differentially expressed proteins (DEPs) of circulating EVs between the DVT group and non-DVT group were enriched in the complement and coagulation cascade. Finally, an integrated model of five biomarkers including SERPING1, C8G, CFH, FIX, and hEVs level was established for post-traumatic DVT diagnosis with robust identification of the traumatic patients with and without DVT (AUC 0.972). CONCLUSION: Post-traumatic DVT patients had changed levels and composition of circulating EVs compared to non-DVT patients and healthy controls. Circulating EVs may acquire pathological protein signatures and become potential biomarkers for identifying subjects' post-traumatic DVT.


Asunto(s)
Biomarcadores , Vesículas Extracelulares , Trombosis de la Vena , Humanos , Trombosis de la Vena/sangre , Trombosis de la Vena/diagnóstico , Vesículas Extracelulares/metabolismo , Biomarcadores/sangre , Masculino , Femenino , Persona de Mediana Edad , Adulto , Proteómica , Heridas y Lesiones/complicaciones , Heridas y Lesiones/sangre , Heridas y Lesiones/diagnóstico
13.
Phys Chem Chem Phys ; 26(19): 14194-14204, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713135

RESUMEN

Constructing Z-scheme heterojunctions incorporating an exquisite hollow structure is an effective performance regulation strategy for the realization of high quantum efficiency and a strong redox ability over photocatalysts. Herein, we report the delicate design and preparation of a core-shell hollow CdS@CoTiO3 Z-scheme heterojunction with a CdS nanoparticle (NP)-constructed outer shell supported on a CoTiO3 nanorod (NR) inner shell. The in situ growth synthetic method led to a tightly connected interface for the heterojunction between CdS and CoTiO3, which shortened the transport distance of photoinduced charges from the interface to the surface. The promoted charge carrier separation efficiency and the retained strong redox capacity caused by the Z-scheme photoinduced charge-transfer mechanism were mainly responsible for the boosted photocatalytic performance. Additionally, the well-designed core-shell structure afforded a larger interfacial area by the multiple direction contact between CdS and CoTiO3, ensuring sufficient channels for efficient charge transfer, and thus further boosting the photocatalytic activity. As an efficient photocatalyst, the optimized CdS@CoTiO3 nanohybrids displayed excellent 2,4-dichlorophenol (2,4-DCP) and tetracycline (TC) degradation efficiencies of 91.3% and 91.8%, respectively. This study presents a Z-scheme heterojunction based on ecofriendly CoTiO3, which could be valuable for the development of metal perovskite photocatalysts for application in environmental remediation, and also demonstrated the tremendous potential of integrating a Z-scheme heterojunction with the morphology design of photocatalyts.

14.
Int J Biol Macromol ; 269(Pt 2): 132212, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729495

RESUMEN

Polyphenols, polysaccharides, and proteins are essential nutrients and functional substances present in food, and when present together these components often interact with each other to influence their structure and function. Proteins and polysaccharides are also excellent carrier materials for polyphenols. In this context, this study investigated the non-covalent interactions between taxifolin (TAX), Lentinus edodes mycelia polysaccharide (LMP), and ß-casein (ß-CN). ß-CN and LMP spontaneously formed nanocomplexes by hydrogen bonds and van der Waals forces. The quenching constant and binding constant were (1.94 ± 0.02) × 1013 L mol-1 s-1 and (3.22 ± 0.17) × 105 L mol-1 at 298 K, respectively. The altered conformation of ß-CN, resulting from the binding to LMP, affected the interaction with TAX. LMP significantly enhanced the binding affinity of TAX and ß-CN, but did not change the static quenching binding mode. The binding constant for ß-CN-TAX was (3.96 ± 0.09) × 1013 L mol-1, and that for the interaction between TAX and ß-CN-LMP was (32.06 ± 0.05) × 1013 L mol-1. In summary, ß-CN-LMP nanocomplexes have great potential as a nanocarrier for polyphenols, and this study provides a theoretical foundation for the rational design of non-covalent complexes involving LMP and ß-CN, both in binary and ternary configurations.


Asunto(s)
Caseínas , Quercetina , Hongos Shiitake , Caseínas/química , Quercetina/química , Quercetina/análogos & derivados , Hongos Shiitake/química , Enlace de Hidrógeno , Polisacáridos Fúngicos/química , Unión Proteica
15.
Int J Biol Macromol ; 267(Pt 1): 131387, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582470

RESUMEN

A novel Lentinus edodes mycelia polysaccharide (LMP) prepared in our laboratory has been identified to be effective in inhibiting the damage of islet ß cells induced by glucose toxicity. However, whether it can effectively alleviate the pyroptosis of human umbilical vein endothelial cells (HUVECs) induced by advanced glycation end products (AGEs) remains unclear. Bioinformatics and cell biology techniques were used to explore the mechanism of LMP inhibiting AGEs-induced HUVECs damage. The results indicated that AGEs significantly increased the expression of LncRNA MALAT1, decreased cell viability to 79.67 %, increased intracellular ROS level to 248.19 % compared with the control group, which further led to cell membrane rupture. The release of LDH in cellular supernatant was increased to 149.42 %, and the rate of propidium iodide staining positive cells increased to 277.19 %, indicating the cell pyroptosis occurred. However, the above trend was effectively retrieved after the treatment with LMP. LMP effectively decreased the expression of LncRNA MALAT1 and mTOR, promoted the expression of miR-199b, inhibited AGEs-induced HUVECs pyroptosis by regulating the NLRP3/Caspase-1/GSDMD pathway. LncRNA MALAT1 might be a new target for LMP to inhibit AGEs-induced HUVECs pyroptosis. This study manifested the role of LMP in improving diabetes angiopathy and broadens the application of polysaccharide.


Asunto(s)
Caspasa 1 , Gasderminas , Productos Finales de Glicación Avanzada , Células Endoteliales de la Vena Umbilical Humana , MicroARNs , Micelio , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , ARN Largo no Codificante , Hongos Shiitake , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Piroptosis/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Caspasa 1/metabolismo , Hongos Shiitake/química , Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal/efectos de los fármacos , Micelio/química , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Supervivencia Celular/efectos de los fármacos , Polisacáridos/farmacología , Polisacáridos/química
16.
Phys Rev Lett ; 132(11): 110201, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563920

RESUMEN

We propose a solvable model of quantum Darwinism to encoding transitions-abrupt changes in how quantum information spreads in a many-body system under unitary dynamics. We consider a random Clifford circuit on an expanding tree, whose input qubit is entangled with a reference. The model has a quantum Darwinism phase, where one classical bit of information about the reference can be retrieved from an arbitrarily small fraction of the output qubits, and an encoding phase where such retrieval is impossible. The two phases are separated by a mixed phase and two continuous transitions. We compare the exact result to a two-replica calculation. The latter yields a similar "annealed" phase diagram, which applies also to a model with Haar random unitaries. We relate our approach to measurement-induced phase transitions (MIPTs), by solving a modified model where an environment eavesdrops on an encoding system. It has a sharp MIPT only with full access to the environment.

17.
Front Public Health ; 12: 1333811, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605869

RESUMEN

Background: In recent years, an increasing number of observational studies have reported the impact of air pollution on autoimmune diseases (ADs). However, no Mendelian randomization (MR) studies have been conducted to investigate the causal relationships. To enhance our understanding of causality, we examined the causal relationships between particulate matter (PM) and nitrogen oxides (NOx) and ADs. Methods: We utilized genome-wide association study (GWAS) data on PM and NOx from the UK Biobank in European and East Asian populations. We also extracted integrated GWAS data from the Finnish consortium and the Japanese Biobank for two-sample MR analysis. We employed inverse variance weighted (IVW) analysis to assess the causal relationship between PM and NOx exposure and ADs. Additionally, we conducted supplementary analyses using four methods, including IVW (fixed effects), weighted median, weighted mode, and simple mode, to further investigate this relationship. Results: In the European population, the results of MR analysis suggested a statistically significant association between PM2.5 and psoriasis only (OR = 3.86; 95% CI: 1.89-7.88; PIVW < 0.00625), while a potential association exists between PM2.5-10 and vitiligo (OR = 7.42; 95% CI: 1.02-53.94; PIVW < 0.05), as well as between PM2.5 and systemic lupus erythematosus (OR = 68.17; 95% CI: 2.17-2.1e+03; PIVW < 0.05). In East Asian populations, no causal relationship was found between air pollutants and the risk of systemic lupus erythematosus and rheumatoid arthritis (PIVW > 0.025). There was no pleiotropy in the results. Conclusion: Our results suggest a causal association between PM2.5 and psoriasis in European populations. With the help of air pollution prevention and control, the harmful progression of psoriasis may be slowed.


Asunto(s)
Contaminación del Aire , Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Psoriasis , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/genética , Contaminación del Aire/efectos adversos , Material Particulado/efectos adversos , Psoriasis/etiología , Psoriasis/genética
18.
J Funct Biomater ; 15(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38667566

RESUMEN

In recent years, the use of zinc (Zn) alloys as degradable metal materials has attracted considerable attention in the field of biomedical bone implant materials. This study investigates the fabrication of porous scaffolds using a Zn-1Mg-0.1Sr alloy through a three-dimensional (3D) printing technique, selective laser melting (SLM). The results showed that the porous Zn-1Mg-0.1Sr alloy scaffold featured a microporous structure and exhibited a compressive strength (CS) of 33.71 ± 2.51 MPa, a yield strength (YS) of 27.88 ± 1.58 MPa, and an elastic modulus (E) of 2.3 ± 0.8 GPa. During the immersion experiments, the immersion solution showed a concentration of 2.14 ± 0.82 mg/L for Zn2+ and 0.34 ± 0.14 mg/L for Sr2+, with an average pH of 7.61 ± 0.09. The porous Zn-1Mg-0.1Sr alloy demonstrated a weight loss of 12.82 ± 0.55% and a corrosion degradation rate of 0.36 ± 0.01 mm/year in 14 days. The Cell Counting Kit-8 (CCK-8) assay was used to check the viability of the cells. The results showed that the 10% and 20% extracts significantly increased the activity of osteoblast precursor cells (MC3T3-E1), with a cytotoxicity grade of 0, which indicates safety and non-toxicity. In summary, the porous Zn-1Mg-0.1Sr alloy scaffold exhibits outstanding mechanical properties, an appropriate degradation rate, and favorable biosafety, making it an ideal candidate for degradable metal bone implants.

19.
Nano Lett ; 24(17): 5125-5131, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639405

RESUMEN

We report a study of thickness-dependent interband and intraband magnetic breakdown by thermoelectric quantum oscillations in ZrSiSe nanoplates. Under high magnetic fields of up to 30 T, quantum oscillations arising from degenerated hole pockets were observed in thick ZrSiSe nanoplates. However, when decreasing the thickness, plentiful multifrequency quantum oscillations originating from hole and electron pockets are captured. These multiple frequencies can be explained by the emergent interband magnetic breakdown enclosing individual hole and electron pockets and intraband magnetic breakdown within spin-orbit coupling (SOC) induced saddle-shaped electron pockets, resulting in the enhanced contribution to thermal transport in thin ZrSiSe nanoplates. These experimental frequencies agree well with theoretical calculations of the intriguing tunneling processes. Our results introduce a new member of magnetic breakdown to the field and open up a dimension for modulating magnetic breakdown, which holds fundamental significance for both low-dimensional topological materials and the physics of magnetic breakdown.

20.
Digit Health ; 10: 20552076241241381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550266

RESUMEN

Background: Hyperuricemia is a common complication of type 2 diabetes mellitus and can lead to serious consequences such as gout and kidney disease. Methods: Patients with type 2 diabetes mellitus from six different communities in Fuzhou were recruited from June to December 2022. Questionnaires, physical examinations, and laboratory tests were conducted to collect data on various variables. Variable screening steps were performed using univariate and multivariate stepwise regression, least absolute shrinkage and selection operator (LASSO) regression, and Boruta feature selection. The dataset was divided into a training-testing set (80%) and an independent validation set (20%). Six machine learning models were built and validated. Results: A total of 8243 patients with type 2 diabetes mellitus were included in this study. According to Occam's razor method, the LASSO regression algorithm was determined to be the optimal risk factors selection method, and nine variables were identified as parameters for the risk assessment model. The absence of diabetes medication and elevated fasting blood glucose levels exhibited a negative correlation with the risk of hyperuricemia. Conversely, seven other variables demonstrated a positive association with the risk of hyperuricemia among patients diagnosed with type 2 diabetes mellitus. Among the six machine learning models, the artificial neural network (ANN) model demonstrated the highest performance. It achieved an areas under curve of 0.736, accuracy of 68.3%, sensitivity of 65.0%, specificity of 72.2%, precision of 73.6% and F1-score of 69.0%. Conclusions: We developed an ANN model to better evaluate the risk of hyperuricemia in the type 2 diabetes population. In the type 2 diabetes population, women should pay particular attention to their uric acid levels, and type 2 diabetics should not neglect their obesity level, blood pressure, kidney function and lipid profile during their regular medical check-ups, in order to do their best to avoid the risks associated with the combination of type 2 diabetes and hyperuricemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...