Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
mSphere ; 9(7): e0077823, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38990043

RESUMEN

Early childhood dental caries (ECC) is the most common chronic disease among children, especially among low socioeconomic populations. Streptococcus mutans is most frequently associated with initiation of ECC. Although many studies report children with multiple S. mutans strains (i.e., genotypes) have greater odds of developing ECC, studies investigating intraspecies interactions in dental caries are lacking. This study investigates the impact of intraspecies interactions on cariogenic and fitness traits of clinical S. mutans isolates using in vitro and in vivo approaches. Association analysis evaluated if presence of multiple S. mutans genotypes within the first year of colonization was associated with caries. Initially, clinical S. mutans isolates from 10 children were evaluated. S. mutans strains (G09 and G18, most prevalent) isolated from one child were used for subsequent analysis. Biofilm analysis was performed for single and mixed cultures to assess cariogenic traits, including biofilm biomass, intra-polysaccharide, pH, and glucan. Confocal laser scanning microscopy (CLSM) and time-lapse imaging were used to evaluate spatial and temporal biofilm dynamics, respectively. A Drosophila model was used to assess colonization in vivo. Results showed the mean biofilm pH was significantly lower in co-cultured biofilms versus monoculture. Doubling of S. mutans biofilms was observed by CLSM and in vivo colonization in Drosophila for co-cultured S. mutans. Individual strains occupied specific domains in co-culture and G09 contributed most to increased co-culture biofilm thickness and colonization in Drosophila. Biofilm formation and acid production displayed distinct signatures in time-lapsed experiments. This study illuminates that intraspecies interactions of S. mutans significantly impacts biofilm acidity, architecture, and colonization.IMPORTANCEThis study sheds light on the complex dynamics of a key contributor to early childhood dental caries (ECC) by exploring intraspecies interactions of different S. mutans strains and their impact on cariogenic traits. Utilizing clinical isolates from children with ECC, the research highlights significant differences in biofilm architecture and acid production in mixed versus single genotype cultures. The findings reveal that co-cultured S. mutans strains exhibit increased cell density and acidity, with individual strains occupying distinct domains. These insights, enhanced by use of time-lapsed confocal laser scanning microscopy and a Drosophila model, offer a deeper understanding of ECC pathogenesis and potential avenues for targeted interventions.


Asunto(s)
Biopelículas , Caries Dental , Streptococcus mutans , Biopelículas/crecimiento & desarrollo , Streptococcus mutans/genética , Streptococcus mutans/fisiología , Streptococcus mutans/patogenicidad , Caries Dental/microbiología , Humanos , Animales , Preescolar , Drosophila/microbiología , Virulencia , Interacciones Microbianas , Genotipo , Femenino , Masculino , Niño , Concentración de Iones de Hidrógeno , Factores de Virulencia/genética , Modelos Animales de Enfermedad , Microscopía Confocal
2.
Appl Environ Microbiol ; 90(4): e0150023, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38456674

RESUMEN

Plasmalogen is a specific glycerophospholipid present in both animal and bacterial organisms. It plays a crucial function in eukaryotic cellular processes and is closely related to several human diseases, including neurological disorders and cancers. Nonetheless, the precise biological role of plasmalogen in bacteria is not well understood. In this study, we identified SMU_438c as the enzyme responsible for plasmalogen production in Streptococcus mutans under anaerobic conditions. The heterologous expression of SMU_438c in a plasmalogen-negative strain, Streptococcus sanguinis, resulted in the production of plasmalogen, indicating that this enzyme is sufficient for plasmalogen production. Additionally, the plasmalogen-deficient S. mutans exhibited significantly lower acid tolerance and diminished its colonization in Drosophila flies compared to the wild-type strain and complemented strain. In summary, our data suggest that plasmalogen plays a vital role in bacterial stress tolerance and in vivo colonization. IMPORTANCE: This study sheds light on the biological role of plasmalogen, a specific glycerophospholipid, in bacteria, particularly in Streptococcus mutans. Plasmalogens are known for their significant roles in eukaryotic cells and have been linked to human diseases like neurological disorders and cancers. The enzyme SMU_438c, identified as essential for plasmalogen production under anaerobic conditions, was crucial for acid tolerance and in vivo colonization in Drosophila by S. mutans, underscoring its importance in bacterial stress response and colonization. These findings bridge the knowledge gap in bacterial physiology, highlighting plasmalogen's role in microbial survival and offering potential insights into microbial pathogenesis and host-microbe interactions.


Asunto(s)
Neoplasias , Enfermedades del Sistema Nervioso , Humanos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Plasmalógenos/metabolismo , Streptococcus mutans/metabolismo , Ácidos/metabolismo , Drosophila , Biopelículas
3.
Int Dent J ; 73(4): 473-480, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37088662

RESUMEN

This review discusses the effects of ginseng and its extracts in the treatment of dental caries, periodontal diseases, endodontic diseases, oral cancers, oral mucosal diseases, and some other dental associations. In the meantime, bioavailability and safety application of ginseng products are discussed. All of the articles reviewed were from PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Wanfang Data, and VIP Chinese Science and Technology Periodicals Full-Text Database through November 2022, including full-text English or non-English publications. Ginseng and its extracts were shown to have beneficial effects on oral diseases, and further studies are needed to understand the mechanisms and confirm the effects in humans.


Asunto(s)
Caries Dental , Panax , Enfermedades Periodontales , Humanos , Salud Bucal , Caries Dental/prevención & control , Enfermedades Periodontales/tratamiento farmacológico , Enfermedades Periodontales/prevención & control , China
4.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834504

RESUMEN

Transgenic expression of Cre recombinase driven by a specific promoter is normally used to conditionally knockout a gene in a tissue- or cell-type-specific manner. In αMHC-Cre transgenic mouse model, expression of Cre recombinase is controlled by the myocardial-specific α-myosin heavy chain (αMHC) promoter, which is commonly used to edit myocardial-specific genes. Toxic effects of Cre expression have been reported, including intro-chromosome rearrangements, micronuclei formation and other forms of DNA damage, and cardiomyopathy was observed in cardiac-specific Cre transgenic mice. However, mechanisms associated with Cardiotoxicity of Cre remain poorly understood. In our study, our data unveiled that αMHC-Cre mice developed arrhythmias and died after six months progressively, and none of them survived more than one year. Histopathological examination showed that αMHC-Cre mice had aberrant proliferation of tumor-like tissue in the atrial chamber extended from and vacuolation of ventricular myocytes. Furthermore, the αMHC-Cre mice developed severe cardiac interstitial and perivascular fibrosis, accompanied by significant increase of expression levels of MMP-2 and MMP-9 in the cardiac atrium and ventricular. Moreover, cardiac-specific expression of Cre led to disintegration of the intercalated disc, along with altered proteins expression of the disc and calcium-handling abnormality. Comprehensively, we identified that the ferroptosis signaling pathway is involved in heart failure caused by cardiac-specific expression of Cre, on which oxidative stress results in cytoplasmic vacuole accumulation of lipid peroxidation on the myocardial cell membrane. Taken together, these results revealed that cardiac-specific expression of Cre recombinase can lead to atrial mesenchymal tumor-like growth in the mice, which causes cardiac dysfunction, including cardiac fibrosis, reduction of the intercalated disc and cardiomyocytes ferroptosis at the age older than six months in mice. Our study suggests that αMHC-Cre mouse models are effective in young mice, but not in old mice. Researchers need to be particularly careful when using αMHC-Cre mouse model to interpret those phenotypic impacts of gene responses. As the Cre-associated cardiac pathology matched mostly to that of the patients, the model could also be employed for investigating age-related cardiac dysfunction.


Asunto(s)
Fibrilación Atrial , Cardiomiopatías , Ferroptosis , Ratones , Animales , Miocitos Cardíacos/metabolismo , Fibrilación Atrial/metabolismo , Cardiomiopatías/metabolismo , Ratones Transgénicos , Fibrosis , Ratones Noqueados
5.
Front Cell Infect Microbiol ; 13: 1279380, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38192401

RESUMEN

The fruit fly Drosophila melanogaster has emerged as a valuable model for investigating human biology, including the role of the microbiome in health and disease. Historically, studies involving the infection of D. melanogaster with single microbial species have yielded critical insights into bacterial colonization and host innate immunity. However, recent evidence has underscored that multiple microbial species can interact in complex ways through physical connections, metabolic cross-feeding, or signaling exchanges, with significant implications for healthy homeostasis and the initiation, progression, and outcomes of disease. As a result, researchers have shifted their focus toward developing more robust and representative in vivo models of co-infection to probe the intricacies of polymicrobial synergy and dysbiosis. This review provides a comprehensive overview of the pioneering work and recent advances in the field, highlighting the utility of Drosophila as an alternative model for studying the multifaceted microbial interactions that occur within the oral cavity and other body sites. We will discuss the factors and mechanisms that drive microbial community dynamics, as well as their impacts on host physiology and immune responses. Furthermore, this review will delve into the emerging evidence that connects oral microbes to systemic conditions in both health and disease. As our understanding of the microbiome continues to evolve, Drosophila offers a powerful and tractable model for unraveling the complex interplay between host and microbes including oral microbes, which has far-reaching implications for human health and the development of targeted therapeutic interventions.


Asunto(s)
Coinfección , Drosophila melanogaster , Humanos , Animales , Disbiosis , Drosophila , Cognición
6.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168339

RESUMEN

Early childhood dental caries (ECC) is the most common chronic disease among children with a heavy disease burden among low socioeconomic populations. Streptococcus mutans is most frequently associated with initiation of ECC. Many studies report children with multiple S. mutans strains (i.e., genotypes) having greater odds of developing ECC, studies investigating intraspecies interactions in dental caries are lacking. In this study, the impact of intraspecies interactions on cariogenic and fitness traits of clinical S. mutans isolates are investigated using in-vitro and in-vivo approaches. Initially clinical S. mutans isolates of 10 children from a longitudinal epidemiological study were evaluated. S. mutans strains (G09 and G18, most prevalent) isolated from one child were used for subsequent analysis. Association analysis was used to determine if presence of multiple S. mutans genotypes within the first-year of colonization was associated with caries. Biofilm analysis was performed for single and mixed cultures to assess cariogenic traits, including biofilm biomass, intra-polysaccharide, pH, and glucan. Confocal Laser Scanning Microscopy (CLSM) and time-lapse imaging were used to evaluate spatial and temporal biofilm dynamics, respectively. A Drosophila model was used to assess colonization in-vivo. Mean biofilm pH was significantly lower in co-cultured biofilms as compared with monoculture biofilms. Doubling of S. mutans in-vitro biofilms was observed by CLSM and in-vivo colonization in Drosophila for co-cultured S. mutans. Individual strains occupied specific domains in co-culture and G09 contributed most to increased co-culture biofilm thickness and colonization in Drosophila. Biofilm formation and acid production displayed distinct signatures in time-lapsed experiments.

7.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361587

RESUMEN

Liver hepatocellular carcinoma (LIHC) remains a global health challenge with poor prognosis and high mortality. FKBP1A was first discovered as a receptor for the immunosuppressant drug FK506 in immune cells and is critical for various tumors and cancers. However, the relationships between FKBP1A expression, cellular distribution, tumor immunity, and prognosis in LIHC remain unclear. Here, we investigated the expression level of FKBP1A and its prognostic value in LIHC via multiple datasets including ONCOMINE, TIMER, GEPIA, UALCAN, HCCDB, Kaplan-Meier plotter, LinkedOmics, and STRING. Human liver tissue microarray was employed to analyze the characteristics of FKBP1A protein including the expression level and pathological alteration in cellular distribution. FKBP1A expression was significantly higher in LIHC and correlated with tumor stage, grade and metastasis. The expression level of the FKBP1A protein was also increased in LIHC patients along with its accumulation in endoplasmic reticulum (ER). High FKBP1A expression was correlated with a poor survival rate in LIHC patients. The analysis of gene co-expression and the regulatory pathway network suggested that FKBP1A is mainly involved in protein synthesis, metabolism and the immune-related pathway. FKBP1A expression had a significantly positive association with the infiltration of hematopoietic immune cells including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Moreover, M2 macrophage infiltration was especially associated with a poor survival prognosis in LIHC. Furthermore, FKBP1A expression was significantly positively correlated with the expression of markers of M2 macrophages and immune checkpoint proteins such as PD-L1, CTLA-4, LAG3 and HAVCR2. Our study demonstrated that FKBP1A could be a potential prognostic target involved in tumor immune cell infiltration in LIHC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Pronóstico , Neoplasias Hepáticas/patología , Linfocitos T CD8-positivos/patología , Biomarcadores de Tumor , Perfilación de la Expresión Génica , Proteínas de Unión a Tacrolimus/genética
8.
Nanomaterials (Basel) ; 12(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35957000

RESUMEN

There are many reports on g-C3N4 nanosheet and BiOCl nanosheet, but few studies on other morphologies of g-C3N4 and BiOCl. Herein, a g-C3N4 nanoball/BiOCl nanotube heterojunction prepared by a simple one-step acetonitrile solvothermal method is reported. The XRD results prove that the g-C3N4/BiOCl composites can be prepared in one step. SEM results revealed that the g-C3N4 was spherical and the BiOCl was tubular. The HRTEM results indicate that g-C3N4 has an amorphous structure and that the (100) crystal plane of BiOCl borders the g-C3N4. Spherical g-C3N4 has a narrow band gap (approximately 1.94 eV), and the band gap of g-C3N4/BiOCl after modification was also narrow. When the BiOCl accounted for 30% of the g-C3N4/BiOCl by mass, the quasi-primary reaction rate constant of RhB degradation was 45 times that of g-C3N4. This successful preparation method for optimizing g-C3N4 involving simple one-step template-free synthesis may be adopted for the preparation of diverse-shapes and high-performance nanomaterials in the future.

9.
Cell Biosci ; 12(1): 73, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35642040

RESUMEN

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of severe vision loss in patients over 55 years old in the industrialized world. In the past 20 years, approximately 288 million patents have been affected by this disease. Despite this high prevalence, the molecular mechanism for AMD remains unclear, and there remains no effective treatment for this disease. The mosaic loss of Y chromosome (mLOY) has been identified as a common phenomenon in multiple age-related disease (i.e., oncogenesis and cardiovascular disease) has recently been identified by genome-wide analysis to be linked to AMD as well. As the Y chromosome mainly possesses three genomic functions, sister chromatin cohesion, cell cycle mitosis, and apoptotic signaling, here we characterize the Y chromosome euchromatic genes and non-chromosome AMD genes in relevance to cellular proliferation and apoptotic signaling of leukocytes. RESULTS: Using STRING, a publically available database of all protein-protein interaction, Grassmann et al. found the genes on the Y chromosome is mainly believed to take part in three major cellular genomic functions- sister chromatin cohesion, cell cycle mitosis, and apoptotic signaling. Based on data from the Ensembl Genome database, we focus on our discussion on coding genes found in the euchromatins but not the PAR1 and PAR2 regions of the Y chromosomes. All 14 known euchromatic genes on the Y chromosome short arm and all 31 known euchromatic genes on the Y chromosome long arm (Yq) are directly or indirectly involved in the cell cycle (meiosis and mitosis) and proliferation. We sorted non-Y chromosome AMD associated genes into these three categories to identify signaling pathways that may compound with cellular dysregulation due to mLOY. Of the genes associated with AMD, complement pathway genes such as C2, C9 and CFH/ARMD4 are associated with proliferation, receptor-mediated endocytosis genes such as APOE, DAB2 and others associated with apoptotic signaling. Because nucleated cells found in peripheral circulation are mainly composed of leukocytes with reduced expression of CD99, a protein essential for leukocytes adhesion, translocation, and function, mLOY in these cells likely affect retinal degeneration through altered immunological surveillance. In fact, there is precedence that circulating macrophage can stabilize and modify the cardiac rhythm and contractility post ischemic damage. Therefore, the most likely mechanism through which peripheral mLOY affects AMD development in men is through the role affected leukocytes play in retinal proliferation and apoptosis. CONCLUSIONS: mLOY in peripheral blood is newly discovered in AMD by Grassmann et al. as it is a common phenomenon in oncogenesis and cardiac dysfunction. Here the recent data conclude the possible mechanism for the newly identified link between mLOY and AMD, and provide support that mLOY in circulating macrophage-monocyte of affected male patients promotes AMD by targeting the retina and causing macular degeneration.

10.
Front Psychiatry ; 12: 655451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935841

RESUMEN

Background: Altered dopamine (DA) signaling has been associated with autism spectrum disorder (ASD), a neurodevelopmental condition estimated to impact 1 in 54 children in the United States. There is growing evidence for alterations in both gastrointestinal function and oral microbiome composition in ASD. Recent work suggests that rare variants of the SLC6A3 gene encoding the DA transporter (DAT) identified in individuals with ASD result in structural and functional changes to the DAT. One such recently identified de novo mutation is a threonine to methionine substitution at position 356 of the DAT (DAT T356M). The DAT T356M variant is associated with ASD-like phenotypes in mice homozygous for the mutation (DAT T356M+/+), including social deficits, hyperactivity, and impaired DA signaling. Here, we determine the impact of this altered DA signaling as it relates to altered oral microbiota, and metabolic and gastrointestinal dysfunction. Methods: In the DAT T356M+/+ mouse, we determine the oral microbiota composition, metabolic function, and gastrointestinal (GI) function. We examined oral microbiota by 16S RNA sequencing. We measured metabolic function by examining glucose tolerance and we probed gastrointestinal parameters by measuring fecal dimensions and weight. Results: In the DAT T356M+/+ mouse, we evaluate how altered DA signaling relates to metabolic dysfunction and altered oral microbiota. We demonstrate that male DAT T356M+/+ mice weigh less (Wild type (WT) = 26.48 ± 0.6405 g, DAT T356M+/+ = 24.14 ± 0.4083 g) and have decreased body fat (WT = 14.89 ± 0.6206%, DAT T356M+/+ = 12.72 ± 0.4160%). These mice display improved glucose handling (WT = 32.60 ± 0.3298 kcal/g, DAT T356M+/+ = 36.97 ± 0.4910 kcal/g), and an altered oral microbiota. We found a significant decrease in Fusobacterium abundance. The abundance of Fusobacterium was associated with improved glucose handling and decreased body fat. Conclusions: Our findings provide new insights into how DAT dysfunction may alter gastrointestinal function, composition of the oral microbiota, and metabolism. Our data suggest that impaired DA signaling in ASD is associated with a number of metabolic and gastrointestinal changes which are common in individuals with ASD.

11.
Clin Cancer Res ; 27(9): 2648-2662, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33542078

RESUMEN

PURPOSE: Endocrine resistance remains a major clinical challenge in estrogen receptor (ER)-positive breast cancer. Despite the encouraging results from clinical trials for the drugs targeting known survival signaling, relapse is still inevitable. There is an unmet need to discover new drug targets in the unknown escape pathways. Here, we report Nemo-like kinase (NLK) as a new actionable kinase target that endows previously uncharacterized survival signaling in endocrine-resistant breast cancer. EXPERIMENTAL DESIGN: The effects of NLK inhibition on the viability of endocrine-resistant breast cancer cell lines were examined by MTS assay. The effect of VX-702 on NLK activity was verified by kinase assay. The modulation of ER and its coactivator, SRC-3, by NLK was examined by immunoprecipitation, kinase assay, luciferase assay, and RNA sequencing. The therapeutic effects of VX-702 and everolimus were tested on cell line- and patient-derived xenograft (PDX) tumor models. RESULTS: NLK overexpression endows reduced endocrine responsiveness and is associated with worse outcome of patients treated with tamoxifen. Mechanistically, NLK may function, at least in part, via enhancing the phosphorylation of ERα and its key coactivator, SRC-3, to modulate ERα transcriptional activity. Through interrogation of a kinase profiling database, we uncovered and verified a highly selective dual p38/NLK inhibitor, VX-702. Coadministration of VX-702 with the mTOR inhibitor, everolimus, demonstrated a significant therapeutic effect in cell line-derived xenograft and PDX tumor models of acquired or de novo endocrine resistance. CONCLUSIONS: Together, this study reveals the potential of therapeutic modulation of NLK for the management of the endocrine-resistant breast cancers with active NLK signaling.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Antineoplásicos Hormonales/uso terapéutico , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/etiología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Fosforilación , Pronóstico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Oncotarget ; 9(53): 30115-30127, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-30046392

RESUMEN

Basal-like breast cancer (BLBC) is an aggressive breast cancer subtype with features similar to the basal cells surrounding the mammary ducts. Treatment of patients with BLBC has been challenging due to the lack of well-defined molecular targets. Due to the clinical and pathological similarities of BLBC with BRCA-deficient breast cancers, the effectiveness of Poly (ADP-ribose) polymerase inhibitors (PARPi) has been tested in early phase clinical trials for patients with advanced BLBC, with limited clinical responses. Recently, it was reported that HORMAD1 overexpression sensitizes BLBC to HR-targeting agents by suppressing homologous recombination. Our independent analysis suggests that HORMAD1 is aberrantly overexpressed in about 80% of BLBC, and its expression in normal tissues is restricted to testis. Our experimental data suggests that HORMAD1 overexpression correlates with focal hypomethylation in BLBC. On the other hand, investigation of the Genomics of Drug Sensitivity in Cancer dataset revealed significantly reduced sensitivity of HORMAD1-overexpressing BLBC cell lines to Rucaparib, a commonly used PARPi. To further assess the role of HORMAD1 in PARPi sensitivity, we generated three HORMAD1-overexpressing xenograft models using the HORMAD1-low BLBC cell lines HCC1954, HCC1806, and BT20; we then subjected these xenograft models to Rucaparib treatment. Ectopic expression of HORMAD1 enhances tumor formations in two of these models, and significantly reduces sensitivity to Rucaparib in the HCC1954 model. Taken together, our data suggest that epigenetic activation of HORMAD1 by hypomethylation in BLBC may endow reduced sensitivity to Rucaparib treatment in some tumor models.

13.
Hum Vaccin Immunother ; 13(10): 2332-2340, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28759297

RESUMEN

Anticaries protein vaccines that induce a mucosal immune response are not effective. Therefore, development of effective and convenient anticaries vaccines is a priority of dental research. Here we generated self-assembling nanoparticles by linking the glucan-binding region of Streptococcus mutans glucosyltransferase (GLU) to the N-terminal domain of ferritin to determine whether these novel nanoparticles enhanced the immunogenicity of an anticaries protein vaccine against GLU in rodents. We constructed the expression plasmid pET28a-GLU-FTH and purified the proteins from bacteria using size-exclusion chromatography. BALB/c mice were used to evaluate the ability of GLU-ferritin (GLU-FTH) nanoparticles to induce GLU-specific mucosal and systemic responses. The protective efficiency of GLU-FTH nanoparticles was compared with that of GLU alone or a mixture of GLU and poly(I:C) after administering an intranasal infusion to Wistar rats. The phagocytosis and maturation of dendritic cells (DCs) exposed in vitro to the nanoparticles were assessed using flow cytometry. The GLU-FTH nanoparticle vaccine elicited significantly higher levels of GLU-specific antibodies compared with GLU or a mixture of GLU and poly(I:C). Immunization with GLU-FTH achieved lower caries scores compared with those of the other vaccines. Administration of GLU-FTH nanoparticles enhanced phagocytosis by DCs and their maturation. Thus, self-assembling GLU-FTH is a highly effective anticaries mucosal vaccine that enhanced antibody production and inhibited S. mutans infection in rodents.


Asunto(s)
Caries Dental/prevención & control , Ferritinas , Glucosiltransferasas/inmunología , Nanopartículas , Vacunas Estreptocócicas/inmunología , Streptococcus mutans/inmunología , Administración Intranasal , Animales , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/fisiología , Ferritinas/química , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Inmunidad Mucosa , Inmunización , Inmunogenicidad Vacunal , Inmunoglobulina A/análisis , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Fagocitosis , Ratas , Ratas Wistar , Vacunas Estreptocócicas/administración & dosificación , Streptococcus mutans/química , Streptococcus mutans/enzimología
14.
Nat Commun ; 7: 12991, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27694828

RESUMEN

More aggressive and therapy-resistant oestrogen receptor (ER)-positive breast cancers remain a great clinical challenge. Here our integrative genomic analysis identifies tousled-like kinase 2 (TLK2) as a candidate kinase target frequently amplified in ∼10.5% of ER-positive breast tumours. The resulting overexpression of TLK2 is more significant in aggressive and advanced tumours, and correlates with worse clinical outcome regardless of endocrine therapy. Ectopic expression of TLK2 leads to enhanced aggressiveness in breast cancer cells, which may involve the EGFR/SRC/FAK signalling. Conversely, TLK2 inhibition selectively inhibits the growth of TLK2-high breast cancer cells, downregulates ERα, BCL2 and SKP2, impairs G1/S cell cycle progression, induces apoptosis and significantly improves progression-free survival in vivo. We identify two potential TLK2 inhibitors that could serve as backbones for future drug development. Together, amplification of the cell cycle kinase TLK2 presents an attractive genomic target for aggressive ER-positive breast cancers.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas Quinasas/metabolismo , Algoritmos , Animales , Apoptosis , Neoplasias de la Mama/genética , Ciclo Celular , Línea Celular Tumoral , Diseño de Fármacos , Femenino , Amplificación de Genes , Silenciador del Gen , Genoma Humano , Humanos , Células MCF-7 , Ratones , Trasplante de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal
15.
J Huazhong Univ Sci Technolog Med Sci ; 36(3): 416-421, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27376814

RESUMEN

The levels of Streptococcus (S.) mutans infections in saliva were evaluated and a comparison for specific antibody levels among children with different levels of S. mutans infection was made. The promising epitopic regions of antigen AgI/II (PAc) and glucosyltransferase (GTF) for potential vaccine targets related to S. mutans adherence were screened. A total of 94 children aged 3-4 years were randomly selected, including 53 caries-negative and 41 caries-positive children. The values of S. mutans and those of salivary total secretory immunoglobulin A (sIgA), anti-PAc and anti-Glucan binding domain (anti-GLU) were compared to determine the correlation among them. It was found the level of s-IgA against specific antigens did not increase with increasing severity of S. mutans infection, and the complete amino acid sequence of PAc and GTFB was analyzed using the DNAStar Protean system for developing specific anti-caries vaccines related to S. mutans adherence. A significantly positive correlation between the amount of S. mutans and children decayed, missing, and filled teeth index was observed. No significant difference was detected in specific sIgA against PAc or GLU between any two groups. No significant correlation was found between such specific sIgA and caries index. A total of 16 peptides from PAc as well as 13 peptides from GTFB were chosen for further investigation. S. mutans colonization contributed to early children caries as an important etiological factor. The level of sIgA against specific antigens did not increase with increasing severity of S. mutans infection in children. The epitopes of PAc and GTF have been screened to develop the peptide-based or protein-based anti-caries vaccines.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Caries Dental/prevención & control , Glucosiltransferasas/inmunología , Vacunas Estreptocócicas/inmunología , Streptococcus mutans/inmunología , Factores de Virulencia/inmunología , Anticuerpos Antibacterianos/biosíntesis , Antígenos Bacterianos/química , Proteínas Bacterianas/química , Estudios de Casos y Controles , Preescolar , Caries Dental/inmunología , Caries Dental/patología , Epítopos/química , Epítopos/inmunología , Femenino , Glucosiltransferasas/química , Humanos , Inmunoglobulina A Secretora/biosíntesis , Masculino , Péptidos/química , Péptidos/inmunología , Saliva/química , Saliva/microbiología , Índice de Severidad de la Enfermedad , Vacunas Estreptocócicas/biosíntesis , Vacunas Estreptocócicas/química , Streptococcus mutans/química , Streptococcus mutans/patogenicidad , Vacunas de Subunidad , Factores de Virulencia/química
16.
Int J Clin Exp Pathol ; 8(9): 10964-74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26617814

RESUMEN

Macrophages recognize microbes through Pattern Recognition Receptors (PRRs), and then release pro-inflammatory and anti-inflammatory cytokines. Recent studies have highlighted that collaboration between different PRRs. However, these studies have neglected the crosstalk between various PRRs on macrophages. In the present study, we investigated the interplay of nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) (NOD1, NOD2) and TLRs (TLR1, 2, 3, 4, 5, 6, 7, 8) in terms of macrophage activation, the expression and production of cytokines. The macrophages were stimulated with a single PRR ligand or a combination of TLR and NOD ligands. After 8 h of incubation, the mRNA expression of interleukin-1ß (IL-1ß), IL-4, IL-6, IL-10, IL-12p35, IL-12p40, IL-13, and interferon-γ (IFN-γ) was evaluated. The production of these cytokines was also measured. NOD2 synergized with TLR3 agonists on enhancement of IL-10 release. However, the combination of NOD1 with TLR3 ligands showed little effect on IL-10 production. Moreover, NOD2 inhibited the percentages of CD11b + F4/80 + cells activated by TLR3 agonist.


Asunto(s)
Citocinas/inmunología , Inflamación/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Animales , Citocinas/biosíntesis , Citometría de Flujo , Ratones , Células RAW 264.7 , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Nat Commun ; 5: 4577, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25099679

RESUMEN

Characterizing the genetic alterations leading to the more aggressive forms of oestrogen receptor-positive (ER+) breast cancers is of critical significance in breast cancer management. Here we identify recurrent rearrangements between the oestrogen receptor gene ESR1 and its neighbour CCDC170, which are enriched in the more aggressive and endocrine-resistant luminal B tumours, through large-scale analyses of breast cancer transcriptome and copy number alterations. Further screening of 200 ER+ breast cancers identifies eight ESR1-CCDC170-positive tumours. These fusions encode amino-terminally truncated CCDC170 proteins (ΔCCDC170). When introduced into ER+ breast cancer cells, ΔCCDC170 leads to markedly increased cell motility and anchorage-independent growth, reduced endocrine sensitivity and enhanced xenograft tumour formation. Mechanistic studies suggest that ΔCCDC170 engages Gab1 signalosome to potentiate growth factor signalling and enhance cell motility. Together, this study identifies neoplastic ESR1-CCDC170 fusions in a more aggressive subset of ER+ breast cancer, which suggests a new concept of ER pathobiology in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Portadoras/genética , Receptor alfa de Estrógeno/genética , Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Separación Celular , Receptor alfa de Estrógeno/metabolismo , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Antígeno Ki-67/metabolismo , Ratones , Ratones Desnudos , Invasividad Neoplásica , Trasplante de Neoplasias , Sistemas de Lectura Abierta , Fenotipo , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal
18.
Breast Cancer Res Treat ; 126(3): 555-63, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20499158

RESUMEN

We aimed to gain a mechanistic understanding of the role of RACK1 in breast carcinoma migration/metastasis. Migration assays were conducted in breast carcinoma cell lines. siRNA targeting RACK1 as well as the Rho kinase inhibitor were also applied. Immunoprecipitation and immunofluorescence were used to study the RACK1/RhoA interaction. GTP-Rho pull-down assays were performed to assess the activation of RhoA. We also conducted immunohistochemistry in 160 breast carcinoma samples. Experiments in vitro showed that RACK1 promotes migration via interaction with RhoA and activation of the RhoA/Rho kinase pathway. Immunohistochemistry in 160 samples revealed that RACK1 is strongly correlated with accepted tumor spread indicators and RhoA (all P < 0.05). Kaplan-Meier survival analysis indicated a correlation between higher RACK1 expression and shorter survival times (P < 0.001). RACK1 is a prognostic factor that promotes breast carcinoma migration/metastasis by interacting with RhoA and activating the RhoA/Rho kinase pathway.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma/metabolismo , Proteínas de Unión al GTP/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Receptores de Superficie Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Activación Enzimática , Femenino , Humanos , Inmunohistoquímica/métodos , Microscopía Fluorescente/métodos , Metástasis de la Neoplasia , Receptores de Cinasa C Activada , Resultado del Tratamiento , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
19.
Int J Mol Med ; 25(5): 709-16, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20372813

RESUMEN

Connexin 26 (Cx26), one of the gap junction-forming family members, is more controversial than other members, as a tumor suppressor. Here, we assessed Cx26 expression in gastric carcinoma, which has not been investigated before, and its clinical significance including survival analyses. Cx26 expression was assessed in 205 tissue samples from gastric carcinoma by immunohistochemistry. Of 205 gastric carcinoma cases, 79 (38.5%) were positive for Cx26 with mainly cytoplasmic localization compared to sporadic membranous staining in normal epithelium, and the expression levels were confirmed by Western blotting and real-time PCR. Negative associations were revealed between Cx26 expression and most clinicopathologic features (all P<0.05). Notably, high Cx26 expression was associated with histological intestinal-type (P=0.017) and early stage of gastric carcinoma. The multivariate regression analysis revealed that positive Cx26 expression was an independent prognostic predictor of intestinal-type GC (P=0.023, HR=2.019). Our findings suggest that aberrant expression of Cx26 in cytoplasm plays a tumor-suppressor role in gastric carcinoma and is an independent biomarker for favorable prognosis in intestinal-type gastric carcinoma.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Conexinas/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores de Tumor/genética , Conexina 26 , Conexinas/genética , Femenino , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Fenotipo , Neoplasias Gástricas/genética , Tasa de Supervivencia
20.
Int J Cancer ; 127(5): 1172-9, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20020495

RESUMEN

We aimed to investigate the expression of RACK1 in breast cancer, evaluate its role in predicting prognosis and compare with commonly used biomarkers: Ki67, ER, PR and HER-2 for patients with breast cancer. The RACK1 expression and its clinical significance were examined in 160 breast carcinoma patients using immunohistochemistry. Correlations of RACK1 expression with other commonly used biomarkers and survival analyses were assessed. Immunohistochemistry results showed that the number of RACK1 cases scoring 0, 1, and 2 were 66, 54, and 40, respectively. RACK1 staining was strongly related to clinical stage, histological grade, Ki67, ER, PR and HER-2 (all p < 0.05). Consistently, all of the cases exhibiting RACK1 staining score 0 were survivors, whereas the majority (55.0%) of those exhibiting RACK1 staining score 2 were deaths. Kaplan-Meier survival analysis of 160 cases revealed a correlation between higher RACK1 expression levels and shorter overall survival times (p < 0.001). Univariate and multivariate analyses revealed that RACK1, tumor size, lymph node metastasis, and HER-2 were independent prognostic factors (all p < 0.05). Interestingly, receiver operator characteristic (ROC) curves showed that the ROC areas for RACK1, Ki67, ER, PR and HER-2 were 0.833, 0.766, 0.446, 0.387, and 0.689, respectively, and the superiority of RACK1 in sensitivity and specificity as biomarker was demonstrated. To our knowledge, it is the first time to investigate the expression of RACK1, and identified that RACK1 is a superior independent biomarker for diagnosis and prognosis comparing with currently widely used diagnostic index in breast carcinoma.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Unión al GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superficie Celular/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/cirugía , Femenino , Estudios de Seguimiento , Humanos , Técnicas para Inmunoenzimas , Antígeno Ki-67/metabolismo , Persona de Mediana Edad , Estadificación de Neoplasias , Curva ROC , Receptor ErbB-2/metabolismo , Receptores de Cinasa C Activada , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Estudios Retrospectivos , Sensibilidad y Especificidad , Tasa de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...