Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res ; 223: 115475, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36773635

RESUMEN

Anaerobic baffled reactor (ABR) is widely used in rural sewage treatment due to its unique structure, strong impact load resistance, and low energy consumption. However, there is a lack of research on pollutant degradation patterns and microbial community succession patterns in each compartment of ABR. In this study, a packed anaerobic baffled reactor (PABR) was constructed. The effects of T and HRT on the pollutant removal performance of PABR were investigated, and the pollutant degradation and microbial community succession in different compartments of PABR were studied. The results show that the removal rates of COD, NH4+-N, and TN of PABR can reach 85.54 ± 1.08%, 16.94 ± 1.01%, and 5.64 ± 1.18% respectively, and PABR has a good pollutant removal effect. With the extension of HRT, the COD removal rate of PABR increases steadily, and the NH4+-N and TN removal rate of PABR increases to a certain extent. The recommended HRT is 72 h. T has a significant impact on the COD removal effect of PABR. The increase of T in a certain range is conducive to the removal of pollutants by PABR. The COD removal rate of PABR decreases gradually along the flow direction, and the removal of organic matter is mainly concentrated in the first compartment. PABR has good removal capacity for CODss and better nitrogen removal capacity compared with traditional ABR. The richness and diversity of the microbial community in PABR increased gradually along the flow direction. The bacterial species in each compartment were similar but the proportion was different, showing the characteristics of multi-stage and separated phase operation. This study provides a new reference for the application of ABR in rural sewage treatment.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Anaerobiosis , Aguas del Alcantarillado , Reactores Biológicos/microbiología , Eliminación de Residuos Líquidos/métodos
2.
Chemosphere ; 311(Pt 1): 137010, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36326517

RESUMEN

This paper explored the effects of the rest phase of tidal flow constructed wetlands (TFCW) on pollutant removal and microbial communities, and further analyzed the mechanism of TFCW removal of pollutants from grey water. The results showed that the removal rate of organic matter was 69.91 ± 2.44% in the control group (NR-TFCW) without the rest phase, 94.95 ± 1.17% in the experimental group (TFCW), and 96.95 ± 2.43% in the control group (P-TFCW) with the ventilation pipe enhanced rest phase. Limiting and enhancing the oxygen supply in the emptying stage of TFCW will enhance the overlap rate of microorganisms in the upper, middle and lower layers of the reactor. Enhancing the rest phase of TFCW leaded to better aerobic removal of organic matter in the microbial community, while limiting the rest phase of TFCW results in the opposite. In addition, the species overlap rate of the top, middle and bottom layers of NR-TFCW (69.98%) and P-TFCW (54.29%) was higher than that of TFCW (11.34%). The removal of organic matter by TFCW mainly relied on the adsorption of biochar in the flood phase, and the microorganisms aerobic degraded the organic matter adsorbed on the biochar in the rest phase. And thus form a continuous cycle of adsorption and biological regeneration. The microbial community in TFCW did not have the ability to nitrify, but had the ability to remove phosphorus. Ammonia nitrogen in the influent was adsorbed by biochar or converted into cytoplasm. While the phosphorus in the influent was adsorbed by the biochar, it was also being biologically removed.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Humedales , Desnitrificación , Nitrógeno , Fósforo , Eliminación de Residuos Líquidos/métodos
3.
Bioresour Technol ; 361: 127657, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35878763

RESUMEN

The aerobic properties of nitrification and the anaerobic properties of denitrification in constructed wetlands are difficult to reconcile. In this study, two constructed wetlands were constructed with pyrite and steel slag in combination with zeolite, and their respective nitrification and denitrification capacities were evaluated under different tidal strategies. The steel slag wetland achieved 70.89 % and 46.04 % removal rates of NH4+-N and total nitrogen (TN), and the carbon consumption of denitrification was 1.51 mg BOD/mgN, which was better than pyrite wetland. Microbial analysis showed that Fe(II) autotrophic denitrification and aerobic denitrification occurred in both wetlands, and they were coupled with nitrification to achieve simultaneous removal of NH4+-N and TN. Microbial co-occurrence network and k-core decomposition analysis indicated that the core genus of steel slag wetlands was nitrifying bacteria. This study provides new insights into the application of tidal flow wetlands to treat rural sewage.


Asunto(s)
Nitrificación , Humedales , Desnitrificación , Compuestos Ferrosos , Hierro , Nitrógeno , Acero
4.
Water Res ; 214: 118182, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196621

RESUMEN

The high concentration of salt in industrial wastewater has a strong inhibitory effect on the removal of pollutants by free radicals. A method has been developed to effectively remove micro organic pollutants in industrial high-salinity wastewater. This study investigated the combination of ferrate(VI) (FeVIO42-, Fe(VI)) and Fe(III) on the reduction of the pollutants in synthetic high-salinity wastewater, while focusing on the effects of major inorganic substances. Whether in synthetic wastewater with or without salinity, Fe(VI)-Fe(III) process exhibited higher pollutants removal rates than Fe(VI). Both chloride (increasing from (2.2 ± 0.1) × 10-2 min-1 to (1.1 ± 0.03) × 10-1 min-1) and bicarbonate (increasing from (2.2 ± 0.1) × 10-2 min-1 to (1.1 ± 0.02) × 10-1 min-1) significantly enhanced the removal of pollutants by the Fe(VI)-Fe(III) process. Chloride changed the ionic strength of Fe(VI), but Fe(III) strengthened the formation of Fe(V)/Fe(IV) from FeO42-, which offset the effect of the decrease of HFeO4-. Bicarbonate complexed Fe(V)/Fe(IV), these complexes enhanced the oxidizing ability of Fe(V)/Fe(IV). Based on the Program Kintecus, Fe(IV) was proposed as the main iron species in Fe(VI)-Fe(III) system, and its concentration was 2 to 3 orders of magnitude higher than Fe(V) at pH 9.0. The enhancement of Fe(VI)-Fe(III) system was observed in the oxidation of pollutant in real wastewater. Overall, the Fe(VI)-Fe(III) process is a new option for treating organic pollutants in industrial high salinity wastewater.

5.
Bioresour Technol ; 344(Pt B): 126185, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34710601

RESUMEN

Constructed wetlands (CWs) offer a promising method to treat domestic wastewater in rural areas, but CWs usually limiting in nitrogen removal and large area. In this study, zeolite and pyrite were used to construct tidal wetlands to address the problems of insufficient oxygen supply and carbon source. The results show that the fully drained wetland achieved the highest ammonia removal load of 34.67 ± 1.72 g/(m2·d) with 8.57 ± 1.13 mg/L of effluent. Pyrite was found to compensate for the lack of carbon source in the denitrification process in half-drained wetland, which achieved a 78.36 ± 5.3% TN removal rate with 7.09 ± 1.85 mg/L effluent concentration. Pyrite released Fe(II) to promote nitrate reduction for denitrification in the subsequent flooded period. Microbial community analysis indicates that the tidal flow constructed wetlands simultaneously achieved nitrification and denitrification by the coupling of in-situ zeolite regeneration and Fe(II) oxidation denitrification.


Asunto(s)
Humedales , Zeolitas , Desnitrificación , Compuestos Ferrosos , Nitrificación , Nitrógeno , Oxígeno , Eliminación de Residuos Líquidos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...