Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858518

RESUMEN

Adding synthetic nucleotides to DNA increases the linear information density of DNA molecules. Here we report that it also can increase the diversity of their three-dimensional folds. Specifically, an additional nucleotide (dZ, with a 5-nitro-6-aminopyridone nucleobase), placed at twelve sites in a 23-nucleotides-long DNA strand, creates a fairly stable unimolecular structure (that is, the folded Z-motif, or fZ-motif) that melts at 66.5 °C at pH 8.5. Spectroscopic, gel and two-dimensional NMR analyses show that the folded Z-motif is held together by six reverse skinny dZ-:dZ base pairs, analogous to the crystal structure of the free heterocycle. Fluorescence tagging shows that the dZ-:dZ pairs join parallel strands in a four-stranded compact down-up-down-up fold. These have two possible structures: one with intercalated dZ-:dZ base pairs, the second without intercalation. The intercalated structure would resemble the i-motif formed by dC:dC+-reversed pairing at pH ≤ 6.5. This fZ-motif may therefore help DNA form compact structures needed for binding and catalysis.

2.
Angew Chem Int Ed Engl ; 63(18): e202402007, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38407551

RESUMEN

Pathological hyperphosphorylation and aggregation of microtubule-associated Tau protein contribute to Alzheimer's Disease (AD) and other related tauopathies. Currently, no cure exists for Alzheimer's Disease. Aptamers offer significant potential as next-generation therapeutics in biotechnology and the treatment of neurological disorders. Traditional aptamer selection methods for Tau protein focus on binding affinity rather than interference with pathological Tau. In this study, we developed a new selection strategy to enrich DNA aptamers that bind to surviving monomeric Tau protein under conditions that would typically promote Tau aggregation. Employing this approach, we identified a set of aptamer candidates. Notably, BW1c demonstrates a high binding affinity (Kd=6.6 nM) to Tau protein and effectively inhibits arachidonic acid (AA)-induced Tau protein oligomerization and aggregation. Additionally, it inhibits GSK3ß-mediated Tau hyperphosphorylation in cell-free systems and okadaic acid-mediated Tau hyperphosphorylation in cellular milieu. Lastly, retro-orbital injection of BW1c tau aptamer shows the ability to cross the blood brain barrier and gain access to neuronal cell body. Through further refinement and development, these Tau aptamers may pave the way for a first-in-class neurotherapeutic to mitigate tauopathy-associated neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Ácido Ocadaico/metabolismo , Ácido Ocadaico/farmacología , Ácido Ocadaico/uso terapéutico , Fosforilación , Proteínas tau/antagonistas & inhibidores , Proteínas tau/metabolismo , Tauopatías/tratamiento farmacológico , Tauopatías/metabolismo , Tauopatías/patología , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología
3.
Science ; 377(6608): 870-874, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35981022

RESUMEN

The ambient metastability of the rock-salt phase in well-defined model systems comprising nanospheres or nanorods of cadmium selenide, cadmium sulfide, or both was investigated as a function of composition, initial crystal phase, particle structure, shape, surface functionalization, and ordering level of their assemblies. Our experiments show that these nanocrystal systems exhibit ligand-tailorable reversibility in the rock salt-to-zinc blende solid-phase transformation. Interparticle sintering was used to engineer kinetic barriers in the phase transformation to produce ambient-pressure metastable rock-salt structures in a controllable manner. Interconnected nanocrystal networks were identified as an essential structure that hosted metastable high-energy phases at ambient conditions. These findings suggest general rules for transformation-barrier engineering that are useful in the rational design of next-generation materials.

4.
Chembiochem ; 22(4): 754-759, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33051959

RESUMEN

Functional nucleic acids (FNAs) are garnering tremendous interest owing to their high modularity and unique bioactivity. Three-dimensional FNAs have been developed to overcome the issues of nuclease degradation and limited cell uptake. We have developed a new facile approach to the synthesis of multiple three-dimensional FNA nanostructures by harnessing photo-polymerization-induced self-assembly. Sgc8 aptamer and CpG oligonucleotide were modified as macro chain-transfer reagents to mediate in situ polymerization and self-assembly. Diverse structures, including micelles, rods, and short worms, afford these two FNAs afford these two FNAs with higher nuclease resistance in serum serum, greater cellular uptake efficiency, and increased bioactivity.


Asunto(s)
Aptámeros de Nucleótidos/química , Nanoestructuras/química , Ácidos Nucleicos/metabolismo , Oligodesoxirribonucleótidos/química , Polímeros/química , Islas de CpG , Metacrilatos/química , Micelas , Ácidos Nucleicos/química , Polimerizacion
5.
J Am Chem Soc ; 141(7): 3198-3206, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30685973

RESUMEN

Nanocube (NC) assemblies display complex superlattice behaviors, which require a systematic understanding of their nucleation and growth as well transformation toward construction of a consistent superlattice phase diagram. This work made use of Fe3O4 NCs with controlled environments, and assembled NCs into three-dimensional (3D) superlattices of simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc), acute and obtuse rhombohedral (rh) polymorphs, and 2D superlattices of square and hexagon. Controlled experiments and computations of in situ and static small-angle X-ray scattering (SAXS) as well as electron microscopic imaging revealed that the fcc and bcc polymorphs preferred a primary nucleation at the early stage of NC assembly, which started from the high packing planes of fcc(111) and bcc(110), respectively, in both 3D and 2D cases. Upon continuous growth of superlattice grain (or domain), a confinement stress appeared and distorted fcc and bcc into acute and obtuse rh polymorphs, respectively. The variable magnitudes of competitive interactions between configurational and directional entropy determine the primary superlattice polymorph of either fcc or bcc, while emergent enhancement of confinement effect on enlarged grains attributes to late developed superlattice transformations. Differently, the formation of a sc polymorph requires a strong driving force that either emerges simultaneously or is applied externally so that one easy case of the sc formation can be achieved in 2D thin films. Unlike the traditional Bath deformation pathway that involves an intermediate body-centered tetragonal lattice, the observed superlattice transformations in NC assembly underwent a simple rhombohedral distortion, which was driven by a growth-induced in-plane compressive stress. Establishment of a consistent phase diagram of NC-based superlattices and reconstruction of their assembly pathways provide critical insight and a solid base for controlled design and scalable fabrication of nanocube-based functional materials with desired superlattices and collective properties for real-world applications.

6.
J Am Chem Soc ; 139(41): 14476-14482, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28953387

RESUMEN

Nanocrystals (NCs) can self-assemble into ordered superlattices with collective properties, but the ability for controlling NC assembly remains poorly understandable toward achievement of desired superlattice. This work regulates several key variables of PbS NC assembly (e.g., NC concentration and solubility, solvent type, evaporation rate, seed mediation and thermal treatment), and thoroughly exploits the nucleation and growth as well as subsequent superlattice transformation of NC assembles and underneath mechanisms. PbS NCs in toluene self-assemble into a single face-centered-cubic (fcc) and body-centered-cubic (bcc) superlattice, respectively, at concentrations ≤17.5 and ≥70 mg/mL, but an intermediate concentration between them causes the coexistence of the two superlattices. Differently, NCs in hexane or chloroform self-assemble into only a single bcc superlattice. Distinct controls of NC assembly in solvent with variable concentrations confirm the NC concentration/solubility mediated nucleation and growth of superlattice, in which an evaporation-induced local gradient of NC concentration causes simultaneous nucleation of the two superlattices. The observation for the dense packing planes of NCs in fast growing fcc rather than bcc reveals the difference of entropic driving forces responsible for the two distinct superlattices. Decelerating the solvent evaporation does not amend the superlattice symmetry, but improves the superlattice crystallinity. In addition to shrinking the superlattice volume, thermal treatment also transforms the bcc to an fcc superlattice at 175 °C. Through a seed-meditated growth, the concentration-dependent superlattice does not change lattice symmetry over the course of continuous growth, whereas the newly nucleated secondary small nuclei through a concentration change have relatively higher surface energy and quickly dissolve in solution, providing additional NC sources for the ripening of the primarily nucleated larger and stable seeds. The observations under multiple controls of assembly parameters not only provide insights into the nucleation and growth as well as transformation of various superlattice polymorphs but also lay foundation for controlled fabrication of desired superlattice with tailored property.

7.
Adv Mater ; 27(31): 4544-9, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26179895

RESUMEN

This materials-by-design approach combines nanocrystal assembly with pressure processing to drive the attachment and coalescence of PbS nanocubes along directed crystallographic dimensions to form a large 3D porous architecture. This quenchable and strained mesostructure holds the storage of large internal stress, which stabilizes the high-pressure PbS phase in atmospheric conditions. Nanocube fusion enhances the structural stability; the large surface area maintains the size-dependent properties.


Asunto(s)
Plomo , Nanopartículas , Transición de Fase , Presión , Sulfuros , Plomo/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanotecnología/métodos , Tamaño de la Partícula , Porosidad , Dispersión del Ángulo Pequeño , Estrés Mecánico , Sulfuros/química , Difracción de Rayos X
8.
Chemistry ; 20(2): 421-5, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24288098

RESUMEN

Porous, hollow metal carbonate microstructures show many unique properties, and are attractive for various applications. Herein, we report the first demonstration of a general strategy to synthesize hollow metal carbonate structures, including porous MnCO3 hollow cubics, porous CoCO3 hollow rhombuses and porous CaCO3 hollow capsules. For example, the porous, hollow MnCO3 microcubes show larger Brunauer-Emmett-Teller (BET) surface areas of 359.5 m(2) g(-1) , which is much larger than that of solid MnCO3 microcubics (i.e., 12.03 m(2) g(-1) ). As a proof of concept, these porous MnCO3 hollow microcubes were applied to water treatment and exhibited an excellent ability to remove organic pollutants in waste water owing to their hollow structure and large specific surface area.

9.
J Am Chem Soc ; 135(16): 6022-5, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23581793

RESUMEN

This Communication reports that needle-like supercrystalline colloidal particles can be synthesized through anisotropy-driven self-assembly of 1,12-dodecanediamine-functionalized CdSe/CdS core/shell nanorods. The resulting superparticles exhibit both 1D lamellar and 2D hexagonal supercrystalline orders along directions parallel and perpendicular to the long axis of constituent nanorods, respectively. Our results show that the needle-like superparticles can be unidirectionally aligned through capillary forces on a patterned solid surface and further transferred into macroscopic, uniform, freestanding polymer films, which exhibit strong linear polarized PL with an enhanced polarization ratio, and are useful as energy down-conversion phosphors in polarized LEDs.


Asunto(s)
Nanotubos , Semiconductores , Anisotropía , Cadmio/química , Compuestos de Cadmio/química , Cristalización , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Selenio/química , Sulfuros/química
10.
Chemistry ; 19(17): 5442-9, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23447542

RESUMEN

We have demonstrated a new and facile bottom-up protocol for the effective synthesis of oval-shaped iron oxide/ethylene glycol (FeOx /EG) mesostructured nanosheets. Deprotonated ethylene glycol molecules are intercalated into iron oxide layers to form an interlayer distance of 10.6 Å. These materials display some peculiar magnetic properties, such as the low Morin temperature T(M) and ferromagnetism below this T(M) value. CdSe/ZnS nanoparticles can be loaded onto these mesostructured nanosheets to produce nanocomposites that combine both magnetic and fluorescence functions. In addition, iron oxide/propanediol (or butanediol) mesostructured materials with increased interlayer distances can also be synthesized. The developed synthetic strategy may be extended toward the creation of other ultrathin mesostructured nanosheets.

11.
Chem Soc Rev ; 42(7): 2804-23, 2013 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-23104182

RESUMEN

Colloidal superparticles are size- and shape-controlled nanoparticle assemblies in the form of colloidal particles. Because these superparticles can exhibit physical and chemical properties different from both individual nanoparticles and their bulk assemblies, the development of superparticle synthesis has attracted significant research attention and is emerging as a new frontier in the field of nanotechnology. In this review, we discuss theoretical considerations on the nucleation and growth of colloidal superparticles. We then present recent progress in the synthesis and characterization of monodispersed colloidal superparticles, which are important for applications such as biomedical diagnosis, biological separation, and light emitting devices.

12.
Science ; 338(6105): 358-63, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23087242

RESUMEN

Colloidal superparticles are nanoparticle assemblies in the form of colloidal particles. The assembly of nanoscopic objects into mesoscopic or macroscopic complex architectures allows bottom-up fabrication of functional materials. We report that the self-assembly of cadmium selenide-cadmium sulfide (CdSe-CdS) core-shell semiconductor nanorods, mediated by shape and structural anisotropy, produces mesoscopic colloidal superparticles having multiple well-defined supercrystalline domains. Moreover, functionality-based anisotropic interactions between these CdSe-CdS nanorods can be kinetically introduced during the self-assembly and, in turn, yield single-domain, needle-like superparticles with parallel alignment of constituent nanorods. Unidirectional patterning of these mesoscopic needle-like superparticles gives rise to the lateral alignment of CdSe-CdS nanorods into macroscopic, uniform, freestanding polymer films that exhibit strong photoluminescence with a striking anisotropy, enabling their use as downconversion phosphors to create polarized light-emitting diodes.

13.
J Am Chem Soc ; 134(44): 18225-8, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23057799

RESUMEN

This communication reports a shape-controlled synthesis of colloidal superparticles (SPs) from iron oxide nanocubes. Our results show that the formation of SPs is under thermodynamic control and that their shape is determined by Gibbs free energy minimization. The resulting SPs adopt a simple-cubic superlattice structure, and their shape can be tuned between spheres and cubes by varying the relative free energy contributions from the surface and bulk free energy terms. The formation of sphere-shaped SPs from nanocubes suggests that the size-dependent hydration effect predicted by the Lum-Chandler-Weeks theory plays a very important role in the self-assembly of nano-objects. In addition, the iron oxide SPs exhibit shape-dependent therapeutic effects in magnetomechanical treatments of cancer cells in vitro.

14.
Proc Natl Acad Sci U S A ; 109(31): 12387-92, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22802676

RESUMEN

RNA interference is a fundamental gene regulatory mechanism that is mediated by the RNA-induced silencing complex (RISC). Here we report that an artificial nanoparticle complex can effectively mimic the function of the cellular RISC machinery for inducing target RNA cleavage. Our results show that a specifically designed nanozyme for the treatment of hepatitis C virus (HCV) can actively cleave HCV RNA in a sequence specific manner. This nanozyme is less susceptible to degradation by proteinase activity, can be effectively taken up by cultured human hepatoma cells, is nontoxic to the cultured cells and a xenotransplantation mouse model under the conditions studied, and does not trigger detectable cellular interferon response, but shows potent antiviral activity against HCV in cultured cells and in the mouse model. We have observed a more than 99% decrease in HCV RNA levels in mice treated with the nanozyme. These results show that this nanozyme approach has the potential to become a useful tool for functional genomics, as well as for combating protein-expression-related diseases such as viral infections and cancers.


Asunto(s)
Hepacivirus/metabolismo , Hepatitis C/terapia , Nanopartículas , Interferencia de ARN , ARN Viral/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Hepacivirus/genética , Hepatitis C/genética , Hepatitis C/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , ARN Viral/genética , Complejo Silenciador Inducido por ARN/genética , Trasplante Heterólogo
15.
J Am Chem Soc ; 134(6): 2868-71, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22283741

RESUMEN

We report a host-guest chemistry approach to controlling the structures of nanocrystal superlattices through a molecular inclusion process. Upon addition of an appropriate amount of guest molecules such as squalane, polyisoprene, and 4-cyano-4'-pentylbiphenyl into a nanocrystal suspension, the resulting nanocrystal superlattices adopted non-close-packed structures (e.g., from face-centered cubic to body-centered cubic) and changed their morphologies to form superparticles. Our mechanistic studies revealed that these guest molecules can strongly tailor the kinetic process in superlattice formation, resulting in the formation of non-close-packed nanocrystal superlattices. The insights gained in this study are not only important for making nanocrystal superlattices with desirable architectures but also open a new way of synthesizing novel organic/inorganic composite materials.

17.
J Am Chem Soc ; 133(43): 17504-12, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-21954890

RESUMEN

We report a study of the surface-functionalization-dependent optical properties of II-VI zinc-blende semiconductor nanocrystals on the basis of ligand-exchange chemistry, isomaterial core/shell growth, optical spectroscopy, transmission electron microscopy, and X-ray powder diffraction. Our results show that the transition energy and extinction coefficient of the 2S(h3/2)1S(e) excitonic band of these nanocrystals can be strongly modified by their surface ligands as well as ligand associated surface atomic arrangement. The oleylamine exchange of oleate-capped zinc-blende II-VI nanocrystals narrows the energy gap between their first and second excitonic absorption bands, and this narrowing effect is size-dependent. The oleylamine exchange results in the quenching, subsequent recovery, and even enhancing of the photoluminescence emission of these II-VI semiconductor nanocrystals. In addition, the results from our X-ray powder diffraction measurements and simulations completely rule out the possibility that oleate-capped zinc-blende CdSe nanocrystals can undergo zinc-blende-to-wurtzite crystal transformation upon ligand exchange with oleylamine. Moreover, our theoretical modeling results suggest that the surface-functionalization-dependent optical properties of these semiconductor nanocrystals can be caused by a thin type II isomaterial shell that is created by the negatively charged ligands (e.g., oleate and octadecyl phosphonate). Taking all these results together, we provide the unambiguous identification that II-VI semiconductor nanocrystals exhibit surface-functionalization-dependent excitonic absorption features.


Asunto(s)
Nanopartículas/química , Óptica y Fotónica , Semiconductores , Propiedades de Superficie
18.
J Am Chem Soc ; 133(36): 14327-37, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21827194

RESUMEN

This Article reports a mechanistic study on the formation of colloidal UO(2)/In(2)O(3) and FePt/In(2)O(3) heterodimer nanocrystals. These dimer nanocrystals were synthesized via the growth of In(2)O(3) as the epitaxial material onto the seed nanocrystals of UO(2) or FePt. The resulting dimer nanocrystals were characterized using X-ray powder diffraction (XRD), energy dispersion spectroscopy, transmission electron microscopy (TEM), scanning transmission electron microscopy, and high-resolution TEM (HRTEM). The results from XRD and HRTEM clearly show that lattice strains exist in both of these dimer nanocrystals. Interestingly, the lattice of In(2)O(3) expands in UO(2)/In(2)O(3) dimers, whereas FePt/In(2)O(3) dimers exhibit compressed In(2)O(3) lattices. Using HRTEM and nanocrystal structure simulations, we have identified the crystallographic orientation of the attachment of the two segments in these two types of dimers. An unconventional Miller index was introduced to describe the crystallographic orientation of these heterodimer nanocrystals. On the basis of the results herein as well as those from other researchers, we propose an empirical law for the determination of the crystallographic attachment orientation in heterodimers: instead of growth on the facet of the seed nanocrystals where lattice mismatch is minimized, the growth of an epitaxial material often chooses the crystal facets where the first atomic monolayer of this material has the strongest affinity for the seed nanocrystals.


Asunto(s)
Indio/química , Hierro/química , Nanopartículas/química , Compuestos Organometálicos/química , Platino (Metal)/química , Cristalografía , Dimerización , Microscopía Electrónica de Transmisión de Rastreo , Difracción de Rayos X
19.
J Am Chem Soc ; 133(37): 14484-7, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21854066

RESUMEN

Two-dimensional single-crystal PbS nanosheets were synthesized by deviatoric stress-driven orientation and attachment of nanoparticles (NPs). In situ small- and wide-angle synchrotron X-ray scattering measurements on the same spot of the sample under pressure coupled with transmission electron microscopy enable reconstruction of the nucleation route showing how enhanced deviatoric stress causes ordering NPs into single-crystal nanosheets with a lamellar mesostructure. At the same time that deviatoric stress drives SC(110) orientation in a face-centered-cubic supercrystal (SC), rocksalt (RS) NPs rotate and align their RS(200) and RS(220) planes within the SC(110) plane. When NPs approach each other along the compression axis, enhanced deviatoric stress drives soft ligands passivated at RS(200) and RS(220) surfaces to reorient from a group of SC(110) in-planes to the interspace of SC[110]-normal planes. While the internal NP structure starts a rocksalt-to-orthorhombic transition at 7.1 GPa, NPs become aligned on RS(220) and RS(200) and thus become attached at those faces. The transition-catalyzed surface atoms accelerate the inter-NP coalescing process and the formation of low-energy structure nanosheet. Above 11.6 GPa, the nucleated single-crystal nanosheets stack into a lamellar mesostructure that has a domain size comparable to the starting supercrystal.

20.
J Am Chem Soc ; 133(32): 12664-74, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21702497

RESUMEN

This paper reports that gas bubbles can be used to tailor the kinetics of the nucleation and growth of inorganic-nanocrystals in a colloidal synthesis. We conducted a mechanistic study of the synthesis of colloidal iron oxide nanocrystals using gas bubbles generated by boiling solvents or artificial Ar bubbling. We identified that bubbling effects take place through absorbing local latent heat released from the exothermic reactions involved in the nucleation and growth of iron oxide nanocrystals. Our results show that gas bubbles display a stronger effect on the nucleation of iron oxide nanocrystals than on their growth. These results indicate that the nucleation and growth of iron oxide nanocrystals may rely on different types of chemical reactions between the iron-oleate decomposition products: the nucleation relies on the strongly exothermic, multiple-bond formation reactions, whereas the growth of iron oxide nanocrystals may primarily depend upon single-bond formation reactions. The identification of exothermic reactions is further consistent with our results in the synthesis of iron oxide nanocrystals with boiling solvents at reaction temperatures ranging from 290 to 365 °C, by which we determined the reaction enthalpy in the nucleation of iron oxide nanocrystals to be -142 ± 12 kJ/mol. Moreover, our results suggest that a prerequisite for effectively suppressing secondary nucleation in a colloidal synthesis is that the primary nucleation must produce a critical amount of nuclei, and this finding is important for a priori design of colloidal synthesis of monodispersed nanocrystals in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA