Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell Signal ; 118: 111136, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471617

RESUMEN

Atherosclerosis is characterised by lipid accumulation and formation of foam cells in arterial walls. Dysregulated autophagy is a crucial factor in atherosclerosis development. The significance of microRNA (miR)-125b-1-3p in cardiovascular disease is well-established; however, its precise role in regulating autophagy and impact on atherosclerosis in vascular smooth muscle cells (VSMCs) remain unclear. Here, we observed reduced autophagic activity and decreased miR-125b expression during atherosclerosis progression. miR-125b-1-3p overexpression significantly reduced atherosclerotic plaque development in mice; it also led to decreased lipid uptake and deposition in VSMCs, enhanced autophagy, and suppression of smooth muscle cell phenotypic changes in-vitro. An interaction between miR-125b-1-3p and the RRAGD/mTOR/ULK1 pathway was revealed, elucidating its role in promoting autophagy. Therefore, miR-125b-1-3p plays a pivotal role in enhancing autophagic processes, inhibiting foam cell formation in VSMCs and mitigating atherosclerosis progression, partly through RRAGD/mTOR/ULK1 signaling axis modulation. Thus, miR-125b-1-3p is a promising target for preventive and therapeutic strategies for atherosclerosis.


Asunto(s)
Aterosclerosis , MicroARNs , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/metabolismo , Autofagia/genética , Proliferación Celular/fisiología , Lípidos , MicroARNs/genética , MicroARNs/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
2.
bioRxiv ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38464011

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by a progressive increase of pulmonary vascular resistance and obliterative pulmonary vascular remodeling that result in right heart hypertrophy, failure, and premature death. The underlying mechanisms of loss of distal capillary endothelial cells (ECs) and obliterative vascular lesion formation remain unclear. Our recent single-cell RNA sequencing, spatial transcriptomics analysis, RNASCOPE, and immunostaining analysis showed that arterial ECs accumulation and loss of capillary ECs were evident in human PAH patients and pulmonary hypertension (PH) rodents. Pseudotime trajectory analysis of the single-cell RNA sequencing data suggest that lung capillary ECs transit to arterial ECs during the development of PH. Our study also identified CXCL12 as the marker for arterial ECs in PH. Capillary EC lineage tracing approach using capillary specific-Dre;Tdtomato reporter mice demonstrated that capillary ECs gave rise to arterial ECs during PH development. Genetic deletion of HIF-2a or pharmacological inhibition of Notch4 normalized the arterial programming in PH. In conclusion, our study demonstrates that capillary endothelium transits to arterial endothelium through the HIF-2a-Notch4 pathway during the development of PAH. Thus, targeting arterial EC transition might be a novel approach for treating PAH patients.

3.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38370670

RESUMEN

Pulmonary arterial hypertension (PAH) is a devastating disease characterized by obliterative vascular remodeling and persistent increase of vascular resistance, leading to right heart failure and premature death. Understanding the cellular and molecular mechanisms will help develop novel therapeutic approaches for PAH patients. Single-cell RNA sequencing (scRNAseq) analysis found that both FABP4 and FABP5 were highly induced in endothelial cells (ECs) of Egln1Tie2Cre (CKO) mice, which was also observed in pulmonary arterial ECs (PAECs) from idiopathic PAH (IPAH) patients, and in whole lungs of pulmonary hypertension (PH) rats. Plasma levels of FABP4/5 were upregulated in IPAH patients and directly correlated with severity of hemodynamics and biochemical parameters using plasma proteome analysis. Genetic deletion of both Fabp4 and 5 in CKO mice (Egln1Tie2Cre/Fabp4-5-/- ,TKO) caused a reduction of right ventricular systolic pressure (RVSP) and RV hypertrophy, attenuated pulmonary vascular remodeling and prevented the right heart failure assessed by echocardiography, hemodynamic and histological analysis. Employing bulk RNA-seq and scRNA-seq, and spatial transcriptomic analysis, we showed that Fabp4/5 deletion also inhibited EC glycolysis and distal arterial programming, reduced ROS and HIF-2α expression in PH lungs. Thus, PH causes aberrant expression of FABP4/5 in pulmonary ECs which leads to enhanced ECs glycolysis and distal arterial programming, contributing to the accumulation of arterial ECs and vascular remodeling and exacerbating the disease.

4.
China CDC Wkly ; 6(2): 40-44, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38250701

RESUMEN

What is already known about this topic?: Kashin-Beck disease (KBD) is a chronic and degenerative osteoarthropathy characterized by cartilage degeneration. It is an endemic disease that is highly prevalent among the Chinese population and poses a significant health risk. What is added by this report?: This is the first national report on the economic burden of KBD in China. According to the data from 2021, KBD has caused significant disease and economic burdens. The most substantial reduction in healthy life expectancy was observed among patients with degree II severity and those aged 60 years and older, resulting in a total indirect economic burden of 112.74 million Chinese Yuan (CNY). What are the implications for public health practice?: The results of this study will contribute to informing the development of tailored prevention and control strategies by the government. These strategies will include targeted policies and recommendations for appropriate healthcare and financial subsidies, which will be based on the demographic characteristics of the endemic areas.

5.
Lab Anim Res ; 39(1): 35, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38115139

RESUMEN

Sex difference has shown in the arthritis diseases in human population and animal models. We investigate how the sex and symmetry vary among mouse models with different genomic backgrounds. Disease data of sex and limbs accumulated in the past more than two decades from four unique populations of murine arthritis models were analyzed. They are (1) interleukin-1 receptor antagonist (IL-1ra) deficient mice under Balb/c background (Balb/c KO); (2) Mice with collagen II induced arthritis under DBA/1 background; (3) Mice with collagen II induced arthritis under C57BL/6 (B6) background and (4) A F2 generation population created by Balb/c KO X DBA/1 KO. Our data shows that there is a great variation in sexual dimorphism for arthritis incidence and severity of arthritis in mice harboring specific genetic modifications. For a F2 population, the incidence of arthritis was 57.1% in female mice and 75.6% in male mice. There was a difference in severity related to sex in two populations: B6.DR1/ B6.DR4 (P < 0.001) and F2 (P = 0.023) There was no difference Balb/c parental strain or in collagen-induced arthritis (CIA) in DBA/1 mice. Among these populations, the right hindlimbs are significantly higher than the scores for the left hindlimbs in males (P < 0.05). However, when examining disease expression using the collagen induced arthritis model with DBA/1 mice, sex-dimorphism did not reach statistical significance, while left hindlimbs showed a tendency toward greater disease expression over the right. Sexual dimorphism in disease expression in mouse models is strain and genomic background dependent. It sets an alarm that potential variation in sexual dimorphism among different racial and ethnic groups in human populations may exist. It is important to not only include both sexes and but also pay attention to possible variations caused by disease expression and response to treatment in all the studies of arthritis in animal models and human populations.

6.
Nat Commun ; 14(1): 7803, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016956

RESUMEN

Indicine cattle, also referred to as zebu (Bos taurus indicus), play a central role in pastoral communities across a wide range of agro-ecosystems, from extremely hot semiarid regions to hot humid tropical regions. However, their adaptive genetic changes following their dispersal into East Asia from the Indian subcontinent have remained poorly documented. Here, we characterize their global genetic diversity using high-quality whole-genome sequencing data from 354 indicine cattle of 57 breeds/populations, including major indicine phylogeographic groups worldwide. We reveal their probable migration into East Asia was along a coastal route rather than inland routes and we detected introgression from other bovine species. Genomic regions carrying morphology-, immune-, and heat-tolerance-related genes underwent divergent selection according to Asian agro-ecologies. We identify distinct sets of loci that contain promising candidate variants for adaptation to hot semi-arid and hot humid tropical ecosystems. Our results indicate that the rapid and successful adaptation of East Asian indicine cattle to hot humid environments was promoted by localized introgression from banteng and/or gaur. Our findings provide insights into the history and environmental adaptation of indicine cattle.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Bovinos , Alelos , Variación Genética , Secuenciación Completa del Genoma , Polimorfismo de Nucleótido Simple
7.
Microbiome ; 11(1): 219, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37779211

RESUMEN

BACKGROUND: Goat is an important livestock worldwide, which plays an indispensable role in human life by providing meat, milk, fiber, and pelts. Despite recent significant advances in microbiome studies, a comprehensive survey on the goat microbiomes covering gastrointestinal tract (GIT) sites, developmental stages, feeding styles, and geographical factors is still unavailable. Here, we surveyed its multi-kingdom microbial communities using 497 samples from ten sites along the goat GIT. RESULTS: We reconstructed a goat multi-kingdom microbiome catalog (GMMC) including 4004 bacterial, 71 archaeal, and 7204 viral genomes and annotated over 4,817,256 non-redundant protein-coding genes. We revealed patterns of feeding-driven microbial community dynamics along the goat GIT sites which were likely associated with gastrointestinal food digestion and absorption capabilities and disease risks, and identified an abundance of large intestine-enriched genera involved in plant fiber digestion. We quantified the effects of various factors affecting the distribution and abundance of methane-producing microbes including the GIT site, age, feeding style, and geography, and identified 68 virulent viruses targeting the methane producers via a comprehensive virus-bacterium/archaea interaction network. CONCLUSIONS: Together, our GMMC catalog provides functional insights of the goat GIT microbiota through microbiome-host interactions and paves the way to microbial interventions for better goat and eco-environmental qualities. Video Abstract.


Asunto(s)
Cabras , Microbiota , Animales , Archaea/genética , Bacterias/genética , Tracto Gastrointestinal/microbiología , Metano
8.
FASEB J ; 37(11): e23259, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37855749

RESUMEN

Myocardial fibrosis (MF) is the characteristic pathological feature of various cardiovascular diseases that lead to heart failure (HF) or even fatal outcomes. Alternatively, activated macrophages are involved in the development of fibrosis and tissue remodeling. Although the receptor for advanced glycation end products (RAGE) is involved in MF, its potential role in regulating macrophage function in cardiac fibrosis has not been fully investigated. We aimed to determine the role of macrophage RAGE in transverse aortic constriction (TAC)-induced MF. In this study, we found that RAGE expression was markedly increased in the infiltrated alternatively activated macrophages within mice hearts after TAC. RAGE knockout mice showed less infiltration of alternatively activated macrophages and attenuated cardiac hypertrophy and fibrosis compared to the wild-type mice. Our data suggest that mice with macrophage-specific genetic deletion of RAGE were protected from interstitial fibrosis and cardiac dysfunction when subjected to pressure overload, which led to a decreased proportion of alternatively activated macrophages in heart tissues. Our in vitro experiments demonstrated that RAGE deficiency inhibited the differentiation into alternatively activated macrophages by suppressing autophagy activation. In the co-culture system, in vitro polarization of RAW264.7 macrophages toward an alternatively activated phenotype stimulated the expression of α-smooth muscle actin and collagen in cardiac fibroblasts. However, the knockdown of RAGE and inhibition of autophagy in macrophages showed reduced fibroblast-to-myofibroblast transition (FMT). Collectively, our results suggest that RAGE plays an important role in the recruitment and activation of alternatively activated macrophages by regulating autophagy, which contributes to MF. Thus, blockage of RAGE signaling may be an attractive therapeutic target for the treatment of hypertensive heart disease.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Animales , Ratones , Autofagia , Fibrosis , Cardiopatías/metabolismo , Insuficiencia Cardíaca/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Miocardio/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo
9.
Phytomedicine ; 119: 154955, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572567

RESUMEN

BACKGROUND: The Chinese herbal compound Xinmaikang (XMK) is effective in treating atherosclerosis (AS), although the associated mechanisms of action remain unclear. We hypothesize that XMK increases mitophagy via the PINK1/Parkin signaling pathway and decreases reactive oxygen species (ROS), thus treating AS. PURPOSE: To explore the above-mentioned mechanisms of action of XMK in AS. MATERIALS AND METHODS: Ultra-performance liquid chromatography assay was performed to clarify the composition of XMK. A 16-week high-fat diet was fed to APOE-/- mice to form an AS model. Next, mice were given XMK(0.95 g/kg/d, 1.99 g/kg/d, 3.98 g/kg/d, i.g.) or Atorvastatin(3 mg/kg/d, i.g.) or Rapamycin(4 mg/kg/d, i.p.) or XMK with Mdivi-1(40 mg/kg/d, i.p.) or an equivalent amount of normal saline for 4 weeks. Then mice were examined for AS plaque area, lesion area, collagen fiber, pro-inflammatory cytokines, lipid level, ROS level and mitophagy level. We assessed AS using Oil Red O, hematoxylin and eosin, and Sirius red staining, as well as ROS measurements. Mitophagy was evaluated by transmission electron microscopy, real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, single-cell Western blot, and immunofluorescence staining. In vitro, by oxidizing low-density lipoprotein, formation of RAW264.7 macrophage-derived foam cells induced. we induced foam cell formation in RAW264.7 macrophages. Then cells were incubated with XMK-medicated serum with or without Mdivi-1. We examined foam cell formation, ROS level, mitophagy level in cells. Finally, we knocked down the PINK1, and examined foam cell formation and PINK1/Parkin level in RAW264.7 macrophages. RESULTS: UPLC analysis revealed 102 main ingredients in XMK. In vivo, XMK at medium-dose or high-dose significantly reduced AS plaques, lipids, pro-inflammatory cytokines, and ROS and increased mitophagy. In further study, Single-cell western blot showed that mitophagy level in macrophages sorted from AS mice was lower than the control mice. While XMK improved mitophagy level. In vitro, XMK reduced foam cell formation and ROS and increased mitophagy. When PINK1 was knocked down, XMK's effects on foam cell formation and PINK1/Parkin pathway activation were reduced. CONCLUSION: The study shows that XMK is effective against AS by mediating macrophage mitophagy via the PINK1/Parkin signaling pathway. For the treatment of AS and drug discovery, it provides an experimental basis and target.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , Mitofagia , Proteínas Quinasas/metabolismo , Mitocondrias , Especies Reactivas de Oxígeno/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Placa Aterosclerótica/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Citocinas/metabolismo
10.
Anim Genet ; 54(4): 421-424, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36849788

RESUMEN

Despite recent advances in generating high-quality reference genome assemblies, the genome sequences for most livestock species, including goats, are still poorly annotated. Single-molecule long-read sequencing has greatly facilitated gene annotation by obtaining full-length transcripts. In this study, we generated full-length transcriptome data for samples from abomasum (n = 2) and testicle (n = 1), using PacBio Iso-Seq technology. We further combined these data with published data from abomasum (5ZY, SRR8618141) to evaluate and improve the gene annotation of the goat genome. We identified 14.5-16.3% of novel genes per sample from the four Iso-Seq datasets. At the transcript level, 40.6% of them were novel, including 29.7% novel transcripts from known genes and 10.9% from novel genes. We further verified the expression of novel genes in four additional RNA-seq data and found that the expression level of novel genes was significantly lower than that of known genes, indicating that the lowly expressed genes tend to be missed in the current genome annotation. This study shows the superiority of full-length transcriptome data in gene annotation, and more such data are required to improve the gene annotation for goat genome and other species.


Asunto(s)
Cabras , Transcriptoma , Animales , Cabras/genética , Genoma , Anotación de Secuencia Molecular , RNA-Seq , Secuenciación de Nucleótidos de Alto Rendimiento , Perfilación de la Expresión Génica/veterinaria
11.
BMJ Open ; 13(1): e063850, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36653051

RESUMEN

PURPOSE: Environmental factors such as long-term exposure to cold can increase the risk of chronic diseases. However, few studies have focused on the impact of environmental factors and lifestyle changes on chronic diseases. To fully explore the association between exposure to environmental factors and the prevalent risk of various chronic diseases, we conducted a large cohort study (Environment and Chronic Disease in Rural Areas of Heilongjiang, China (ECDRAHC)). The ECDRAHC collected detailed questionnaire data covering 10 sections, physical measurements and blood and urine samples. In this study, we describe the design and implementation of the cohort study and present the findings for the first 10 000 participants. PARTICIPANTS: The ECDRAHC study was carried out in rural areas where the annual average temperature is 2.9°C, and aimed to recruit 40 000 participants who are long-term residents aged 35-74 years. The participants will be followed up every 5 years. Currently, ECDRAHC has reached 26.7% (n=10 694) of the targeted population. FINDINGS TO DATE: A total of 10 694 adults aged 35-74 years were recruited, including 61.7% women. The prevalence of current smokers was 46.8% in men and 35.4% in women. The mean blood pressure was 140.2/89.9 mm Hg and 135.7/85.0 mm Hg in men and women, respectively. The mean body mass index was 24.74 kg/m2 in men and 24.65 kg/m2 in women, with >7.3% being obese (>30 kg/m2). The main non-communicable diseases found in phase 1 were hypertension, diabetes, hypertriglyceridaemia and metabolic syndrome, with a higher prevalence of 51.0%, 21.6%, 46.8% and 42.6%, respectively. FUTURE PLANS: We plan to complete the follow-up for the first phase of the ECDRAHC in 2024. The second and third phase of the cohort will be carried out steadily, as planned. This cohort will be used to investigate the relationship between environmental factors, lifestyle, and genetic and common chronic diseases.


Asunto(s)
Diabetes Mellitus , Hipertensión , Adulto , Masculino , Humanos , Femenino , Estudios de Cohortes , Hipertensión/epidemiología , China/epidemiología , Enfermedad Crónica , Factores de Riesgo , Población Rural , Prevalencia
12.
Trop Med Infect Dis ; 7(9)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36136652

RESUMEN

BACKGROUND: The greatest challenges are imposed on the overall capacity of disease management when the cases reach the maximum in each wave of the pandemic. METHODS: The cases and deaths for the four waves of COVID-19 in 119 countries and regions (CRs) were collected. We compared the mortality across CRs where populations experience different economic and healthcare disparities. FINDINGS: Among 119 CRs, 117, 112, 111, and 55 have experienced 1, 2, 3, and 4 waves of COVID-19 disease, respectively. The average mortality rates at the disease turning point were 0.036, 0.019. 0.017, and 0.015 for the waves 1, 2, 3, and 4, respectively. Among 49 potential factors, income level, gross national income (GNI) per capita, and school enrollment are positively correlated with the mortality rates in the first wave, but negatively correlated with the rates of the rest of the waves. Their values for the first wave are 0.253, 0.346 and 0.385, respectively. The r value for waves 2, 3, and 4 are -0.310, -0.293, -0.234; -0.263, -0.284, -0.282; and -0.330, -0.394, -0.048, respectively. In high-income CRs, the mortality rates in waves 2 and 3 were 29% and 28% of that in wave 1; while in upper-middle-income CRs, the rates for waves 2 and 3 were 76% and 79% of that in wave 1. The rates in waves 2 and 3 for lower-middle-income countries were 88% and 89% of that in wave 1, and for low-income countries were 135% and 135%. Furthermore, comparison among the largest case numbers through all waves indicated that the mortalities in upper- and lower-middle-income countries is 65% more than that of the high-income countries. INTERPRETATION: Conclusions from the first wave of the COVID-19 pandemic do not apply to the following waves. The clinical outcomes in developing countries become worse along with the expansion of the pandemic.

13.
Sci Total Environ ; 832: 154770, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35341873

RESUMEN

BACKGROUND: When the COVID-19 case number reaches a maximum in a country, its capacity and management of health system face greatest challenge. METHODS: We performed a cross-sectional study on data of turning points for cases and deaths for the first three waves of COVID-19 in countries with more than 5000 cumulative cases, as reported by Worldometers and WHO Coronavirus (COVID-19) Dashboard. We compared the case fatality rates (CFRs) and time lags (in unit of day) between the turning points of cases and deaths among countries in different development stages and potential influence factors. As of May 10, 2021, 106 out of 222 countries or regions (56%) reported more than 5000 cases. Approximately half of them have experienced all the three waves of COVID-19 disease. The average mortality rate at the disease turning point was 0.038 for the first wave, 0.020 for the second wave, and 0.023 for wave 3. In high-income countries, the mortality rates during the first wave are higher than that of the other income levels. However, the mortality rates during the second and third waves of COVID-19 were much lower than those of the first wave, with a significant reduction from 5.7% to 1.7% approximately 70%. At the same time, high-income countries exhibited a 2-fold increase in time lags during the second and the third waves compared to the first wave, suggesting that the periods between the cases and deaths turning point extended. High rates in the first wave in developed countries are associated to multiple factors including transportation, population density, and aging populations. In upper middle- and lower middle-income countries, the decreasing of mortality rates in the second and third waves were subtle or even reversed, with increased mortality during the following waves. In the upper and lower middle-income countries, the time lags were about 50% of the durations observed from high-income countries. INTERPRETATION: Economy and medical resources affect the efficiency of COVID-19 mitigation and the clinical outcomes of the patients. The situation is likely to become even worse in the light of these countries' limited ability to combat COVID-19 and prevent severe outcomes or deaths as the new variant transmission becomes dominant.


Asunto(s)
COVID-19 , Estudios Transversales , Humanos , Renta , Densidad de Población , SARS-CoV-2
14.
Anim Biotechnol ; 33(5): 810-815, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33146068

RESUMEN

With the advent of global climate change, heat-tolerance is becoming more and more important to the sustainability of animal husbandry production systems. Previous studies have shown that MYO1A gene associated with pigmentation may be closely related to heat-tolerance in cattle. In this study, a novel missense mutation (NC_037332.1 g.56390345 A > G) was first detected in MYO1A in 891 individuals of 35 cattle breeds, which transformed the amino acid isoleucine into valine. The purpose of this study was to determine the allele frequencies distribution of this locus in Chinese indigenous cattle and to analyze the relationship between this locus and heat-tolerance. Further analysis showed that frequency of wild allele A decreased gradually from northern cattle to southern cattle, whereas frequency of mutant type allele G showed the opposite pattern, which was consistent with the distribution of various climatic conditions of China. Additionally, association analysis was carried out between genotypes and four climatic conditions (annual mean temperature (T), relative humidity (H), temperature-humidity index (THI) and average annual sunshine hours (100-cloudiness) (SR)). Analysis results showed that genotypes were significantly correlated with climatic conditions. Therefore, our results suggest that the novel SNP (rs209559414) is related to heat-tolerance trait of Chinese indigenous cattle.


Asunto(s)
Calor , Isoleucina , Animales , Bovinos/genética , Genotipo , Humedad , Valina
15.
Front Microbiol ; 12: 713349, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659143

RESUMEN

Intercropping between sugarcane and soybean is widely used to increase crop yield and promote the sustainable development of the sugarcane industry. However, our understanding of the soil microenvironment in intercropping systems, especially the effect of crop varieties on rhizosphere soil bacterial communities, remains poor. We selected two excellent sugarcane cultivars, Zhongzhe1 (ZZ1) and Zhongzhe9 (ZZ9), from Guangxi and the local soybean variety GUIZAO2 from Guangxi for field interplanting experiments. These two cultivars of sugarcane have good drought resistance. Rhizosphere soil samples were collected from the two intercropping systems to measure physicochemical properties and soil enzyme activities and to extract total soil DNA for high-throughput sequencing. We found that the diversity of the rhizosphere bacterial community was significantly different between the two intercropping systems. Compared with ZZ1, the ZZ9 intercropping system enriched the nitrogen-fixing bacteria, increasing the available nitrogen content by 18% compared with that with ZZ1. In addition, ZZ9 intercropping with soybean formed a more compact rhizosphere environment than ZZ1, thus providing favorable conditions for sugarcane growth. These results provide guidance for the sugarcane industry, especially for the management of sugarcane and soybean intercropping in Guangxi, China.

16.
Environ Pollut ; 287: 117610, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34174667

RESUMEN

We investigated the roles of rootstocks in Cu accumulation and tolerance in Malus plants by grafting 'Hanfu' (HF) scions onto M. baccata (Mb) and M. prunifolia (Mp) rootstocks, which have different Cu tolerances. The grafts were exposed to basal or excess Cu for 20 d. Excess Cu-treated HF/Mb had less biomass, and pronounced root architecture deformation and leaf ultrastructure damage than excess Cu-challenged HF/Mp. Root Cu concentrations and bio-concentration factor (BCF) were higher in HF/Mp than HF/Mb, whereas HF/Mb had higher stem and leaf Cu concentrations than HF/Mp. Excess Cu lowered root and aerial tissue BCF and translocation factor (Tf) in all plants; however, Tf was markedly higher in HF/Mb than in HF/Mp. The subcellular distribution of Cu in the roots and leaves indicated that excess Cu treatments increased Cu fixation in the root cell walls, which decreased Cu mobility. Compared to HF/Mb, HF/Mp sequestered more Cu in its root cell walls and less Cu in leaf plastids, nuclei, and mitochondria. Moreover, HF/Mp roots and leaves had higher concentrations of water-insoluble Cu compounds than HF/Mb, which reduced Cu mobility and toxicity. Fourier transform infrared spectroscopy analysis showed that the carboxyl, hydroxyl and acylamino groups of the cellulose, hemicellulose, pectin and proteins were the main Cu binding sites in the root cell walls. Excess Cu-induced superoxide anion and malondialdehyde were 28.6% and 5.1% lower, but soluble phenolics, ascorbate and glutathione were 10.5%, 41.9% and 17.7% higher in HF/Mp than HF/Mb leaves. Compared with HF/Mb, certain genes involved in Cu transport were downregulated, while other genes involved in detoxification were upregulated in HF/Mp roots and leaves. Our results show that Mp inhibited Cu translocation and mitigated Cu toxicity in Malus scions by regulating Cu mobility, antioxidant defense mechanisms, and transcription of key genes involved in Cu translocation and detoxification.


Asunto(s)
Cobre , Malus , Expresión Génica , Hojas de la Planta , Raíces de Plantas , Árboles
17.
Oxid Med Cell Longev ; 2021: 5518825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936381

RESUMEN

Due to the challenges of antibiotic resistance to global health, bacteriocins as antimicrobial compounds have received more and more attention. Bacteriocins are biosynthesized by various microbes and are predominantly used as food preservatives to control foodborne pathogens. Now, increasing researches have focused on bacteriocins as potential clinical antimicrobials or immune-modulating agents to fight against the global threat to human health. Given the broad- or narrow-spectrum antimicrobial activity, bacteriocins have been reported to inhibit a wide range of clinically pathogenic and multidrug-resistant bacteria, thus preventing the infections caused by these bacteria in the human body. Otherwise, some bacteriocins also show anticancer, anti-inflammatory, and immune-modulatory activities. Because of the safety and being not easy to cause drug resistance, some bacteriocins appear to have better efficacy and application prospects than existing therapeutic agents do. In this review, we highlight the potential therapeutic activities of bacteriocins and suggest opportunities for their application.


Asunto(s)
Antibacterianos/uso terapéutico , Bacteriocinas/uso terapéutico , Antibacterianos/farmacología , Bacteriocinas/farmacología , Humanos
18.
Open Med (Wars) ; 16(1): 134-138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33521319

RESUMEN

While countries are in a hurry to obtain SARS-CoV-2 vaccine, we are concerned with the availability of vaccine and whether a vaccine will be available to all in need. We predicted three possible scenarios for vaccine distributions and urge an international united action on the worldwide equitable access. In case the international community does not reach a consensus on how to distribute the vaccine to achieve worldwide equitable access, we call for a distribution plan that includes the employees in international transportation industries and international travelers to halt the disease transmission and promote the recovery of the global economy.

19.
Life Sci ; 267: 118933, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33359744

RESUMEN

AIMS: Non-small cell lung cancer (NSCLC) is considered a highly fatal tumor. Importantly, angiogenesis is critical for tumor progression. Long non-coding RNAs (lncRNAs), which are untranslatable, control cell functions through different pathways. lncRNA EPIC1 has been reported to promote cell viability, cell cycle progression, and invasion. However, the relationship between EPIC1 and tumor angiogenesis remains an enigma. We explored the role of EPIC1 in tumor angiogenesis in NSCLC. MATERIALS AND METHODS: First, EPIC1 expression was analyzed using the GEPIA database and was further verified using qPCR in tumor tissues from patients with NSCLC and NSCLC cell lines. Next, EPIC1 function was detected using loss-of-function and gain-of-function assays. Moreover, EdU staining, flow cytometry, and channel formation assays were performed to assess HUVEC proliferation and channel the formation in the NSCLC-HUVEC transwell co-culture system. KEY FINDINGS: EPIC1 expression was significantly upregulated in NSCLC tissues and cell lines. Furthermore, the overexpression of EPIC1 in NSCLC cells stimulated HUVEC channel formation and proliferation by activating Ang2/Tie2 signaling, and the opposite results were obtained when EPIC1 was silenced in NSCLC cells. The density of new blood vessels was simultaneously increased by EPIC1 overexpression in vivo, using CAM angiogenesis model and a nude mouse tumor model. Finally, all these experimental findings could be established in the samples from patients with NSCLC. We postulate that EPIC1 promotes tumor angiogenesis by activating the Ang2/Tie2 axis in NSCLC. SIGNIFICANCE: Elucidating the molecular and cellular mechanisms of EPIC1 in tumor angiogenesis provides a novel perspective on NSCLC clinical therapy.


Asunto(s)
Angiopoyetina 2/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , ARN Largo no Codificante/genética , Receptor TIE-2/metabolismo , Angiopoyetina 2/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/irrigación sanguínea , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Embrión de Pollo , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Xenoinjertos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Patológica/genética , Neovascularización Patológica/patología , ARN Largo no Codificante/metabolismo , Receptor TIE-2/genética , Transducción de Señal
20.
BMC Genomics ; 21(1): 674, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993537

RESUMEN

BACKGROUND: Fuzhong buffalo, a native breed of Guangxi Zhuang Autonomous Region, is traditionally used as a draft animal to provide farm power in the rice cultivation. In addition, the Fuzhong buffalo also prepared for the bullfighting festival organized by the locals. The detection of the selective signatures in its genome can help in elucidating the selection mechanisms in its stamina and muscle development of a draft animal. RESULTS: In this study, we analyzed 27 whole genomes of buffalo (including 15 Fuzhong buffalo genomes and 12 published buffalo genomes from Upper Yangtze region). The ZHp, ZFst, π-Ratio, and XP-EHH statistics were used to identify the candidate signatures of positive selection in Fuzhong buffalo. Our results detected a set of candidate genes involving in the pathways and GO terms associated with the response to exercise (e.g., ALDOA, STAT3, AKT2, EIF4E2, CACNA2D2, TCF4, CDH2), immunity (e.g., PTPN22, NKX2-3, PIK3R1, ITK, TMEM173), nervous system (e.g., PTPN21, ROBO1, HOMER1, MAGI2, SLC1A3, NRG3, SNAP47, CTNNA2, ADGRL3). In addition, we also identified several genes related to production and growth traits (e.g., PHLPP1, PRKN, MACF1, UCN3, RALGAPA1, PHKB, PKD1L). Our results depicted several pathways, GO terms, and candidate genes to be associated with response to exercise, immunity, nervous system, and growth traits. CONCLUSIONS: The selective sweep analysis of the Fuzhong buffalo demonstrated positive selection pressure on potential target genes involved in behavior, immunity, and growth traits, etc. Our findings provided a valuable resource for future research on buffalo breeding and an insight into the mechanisms of artificial selection.


Asunto(s)
Búfalos/genética , Sitios de Carácter Cuantitativo , Selección Artificial , Animales , Selección Genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA