Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(9): 4849-4857, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38386626

RESUMEN

ß-N-Acetylhexosaminidases have attracted much attention in the enzymatic synthesis of lacto-N-triose II (LNT2) as a backbone precursor of human milk oligosaccharides (HMOs). In this study, a novel glycoside hydrolase (GH) 20 family ß-N-acetylhexosaminidase, FlaNag2353, from Flavobacterium algicola was biochemically characterized and applied to synthesize LNT2. FlaNag2353 displayed optimal activity to p-nitrophenyl N-acetyl-ß-d-glucosaminide (pNP-GlcNAc) at 40 °C and pH 8.0. In addition to its excellent hydrolysis activity toward pNP-GlcNAc and chitooligosaccharides, FlaNag2353 showed trans-glycosylation activity. Under conditions of pH 9.0 and 55 °C for 2 h and utilizing 200 mM lactose and 10 mM pNP-GlcNAc, FlaNag2353 synthesized LNT2 with a conversion ratio of 4.15% calculated from pNP-GlcNAc. Moreover, when applied to LNT2 synthesis with 10 mM pNP-GlcNAc and 9.7% (w/v) industrial waste whey powder, FlaNag2353 achieved a conversion ratio of 2.39%. This study has significant implications for broadening the applications of GH20 ß-N-acetylhexosaminidases and promoting the high-value utilization of whey powder.


Asunto(s)
Flavobacterium , Trisacáridos , beta-N-Acetilhexosaminidasas , Humanos , beta-N-Acetilhexosaminidasas/química , Polvos , Oligosacáridos/química , Acetilglucosaminidasa
2.
J Agric Food Chem ; 71(13): 5062-5074, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36967589

RESUMEN

Metabolic engineering is widely utilized in the food and other fields and has the benefits of low-cost substrates, eco-friendly fermentation processes, and efficient substrate synthesis. Microbial synthesis by metabolic engineering requires maintaining the productive capacity of the microorganism. Moreover, economic reasons limit the use of inducers in the exogenous synthesis pathway. Most unicellular microorganisms can interact by emitting signaling molecules; this mechanism, known as quorum sensing (QS), is an autoinduced system of microorganisms. With the deepening research on QS systems of different microorganisms, its components are widely used to regulate the metabolic synthesis of microorganisms as a dynamic regulatory system. In this Review, we described the typical bacterial QS mechanisms. Then, we summarized various regulatory strategies for QS and their applications to metabolic engineering. Finally, we underlined the potential for QS modularity in future metabolic engineering and suggested stimulating research on fungal QS systems.


Asunto(s)
Ingeniería Metabólica , Percepción de Quorum , Percepción de Quorum/fisiología , Bacterias/genética
3.
Food Chem ; 330: 127230, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32526651

RESUMEN

Chitooligosaccharides are oligosaccharides with many biological activities that can be used in food production for sweeteners, preservatives and humectants, among other products. Chitin, a long-chain polymer of N-acetylglucosamine and a derivative of glucose, can be hydrolyzed by applying chitinase to break down glycosidic bonds to form chitooligosaccharides. Chitinases arising from heterologous gene expression are usually linked to a 6 × His-tag to facilitate easy purification. Heterologously expressed chitinase linked to a 6 × His-tag is a transgenic element, but enzyme activity tests cannot be used to distinguish transgenic elements from natural elements. In this study, we established a rapid and easy method to detect His-tag-containing chitinase using gold nanoparticles (AuNPs) and ssDNA aptamers. Using this method, His-tag-containing chitinase could be detected at concentrations as low as 0.136 nM within 5 min. Color changes of AuNPs showed a positive correlation with His-tag-containing chitinase concentrations.


Asunto(s)
Aptámeros de Nucleótidos/química , Quitinasas/metabolismo , ADN de Cadena Simple/química , Oro/química , Nanopartículas del Metal/química , Quitina/análogos & derivados , Quitina/metabolismo , Quitosano , Color , Hidrólisis , Oligosacáridos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...