Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Theriogenology ; 226: 378-386, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972169

RESUMEN

METTL3-mediated N6-methyladenosine (m6A) modification is critical for gametogenesis and early embryonic development. However, the function of METTL3-mediated m6A modification in the early development of somatic nuclear transfer embryos (SCNT) remains unclear. Here, we found that METTL3 mRNA and protein levels exhibit dynamic changes during the early development of porcine SCNT embryos. The levels of METTL3 mRNA and protein in SCNT embryos at specific developmental stages differ from those in parthenogenetic activation (PA) counterparts. SiRNA injection effectively reduced the levels of METTL3 mRNA and protein in 4-cell embryos and blastocysts. METTL3 knockdown significantly reduced the cleavage and blastocyst rates of SCNT embryos. METTL3 knockdown significantly reduced the number of total cells and trophectoderm (TE) cells in the resulting blastocysts and perturbed cell lineage allocation. In addition, METTL3 knockdown reduced the levels of m6A modification in 4-cell embryos and blastocysts. Importantly, METTL3 knockdown decreased the expression levels of CDX2, GATA3, NANOG and YAP, and increased the expression levels of SOX2 and OCT4. Taken together, these results demonstrate that METTL3-mediated m6A modification regulates early development and lineage differentiation of porcine SCNT embryos.


Asunto(s)
Clonación de Organismos , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Metiltransferasas , Animales , Porcinos/embriología , Porcinos/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Clonación de Organismos/veterinaria , Clonación de Organismos/métodos , Técnicas de Transferencia Nuclear/veterinaria , Adenosina/análogos & derivados , Adenosina/metabolismo , Metilación , Técnicas de Silenciamiento del Gen , Blastocisto/metabolismo , Embrión de Mamíferos/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética
3.
Front Vet Sci ; 11: 1395718, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881785

RESUMEN

According to previous studies, the quality and fertilization rate of fresh sperm from boars of different ages were significantly different. However, the difference of freeze-thaw sperm quality and fertility in boars of different ages is unclear. In this study, boars of a Chinese native breed were assigned into two groups. Each group consisted of five boars aged aged either 2-3 years (young boars = YB) or 5-6 years (aging boars = AB) A total of 60 ejaculates for each group were collected and cryopreserved. Semen quality and in vitro fertility of post-thaw sperm was evaluated. The results showed that the concentration and motility of fresh sperm collected from AB were similar to YB, but their semen volume was higher than that in YB (p < 0.05). Frozen-thawed sperm of AB had lower viability than YB, and higher abnormal rate and reactive oxygen species (ROS) levels of YB (p < 0.05). There was no effect of the age on post-thaw sperm motility and time survival. Functional assessments indicated that increasing age markedly compromises the integrity of the sperm plasma membrane and acrosome, as well as mitochondrial functionality post-thaw, albeit without affecting DNA integrity. Furthermore, increasing age of boars reduces the ability of sperm to bind to the oocyte zona pellucida after thawing, delaying the time of the first embryo cleavage after fertilization. Finally, the early developmental efficiency of in vitro fertilized embryos progressing from 4-cell to blastocyst derived from post-thaw sperm in AB significantly decreased compared to those from YB (p < 0.05). Taken together, these results suggest that increasing age in boars impairs the quality and in vitro fertility of frozen thawed sperm.

4.
Int J Biol Macromol ; 271(Pt 1): 132451, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777006

RESUMEN

Circular RNA (circRNA) is abundantly expressed in preimplantation embryos and embryonic stem cells in mice and humans. However, its function and mechanism in early development of mammalian embryos remain unclear. Here, we showed that circHIRA mediated miR-196b-5p to regulate porcine early embryonic development. We verified the circular feature of circHIRA by sanger sequencing, and proved the authenticity of circHIRA by enzyme digestion test. HIRA and circHIRA were expressed in porcine early embryos, and its expression levels significantly increased from 8-cell stage onwards and reached the maximum at the blastocyst stage. Functional studies revealed that circHIRA knockdown not only significantly reduced the developmental efficiency of embryos from 8-cell stage to blastocyst stage, but also impaired the blastocyst quality. Mechanistically, integrated analysis of miRNA prediction and gene expression showed that circHIRA knockdown significantly increased the expression of miR-196b-5p in porcine early embryos. Furthermore, miR-196b-5p inhibitor injection could rescue the early development of circHIRA knockdown embryos. Taken together, the findings reveal that circHIRA regulates porcine early embryonic development via inhibiting the expression of miR-196b-5p.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , MicroARNs , ARN Circular , Animales , MicroARNs/genética , Desarrollo Embrionario/genética , Porcinos , ARN Circular/genética , Blastocisto/metabolismo , Técnicas de Silenciamiento del Gen
5.
BMC Genomics ; 25(1): 447, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714941

RESUMEN

BACKGROUND: The health and size of the testes are crucial for boar fertility. Testicular development is tightly regulated by epigenetics. N6-methyladenosine (m6A) modification is a prevalent internal modification on mRNA and plays an important role in development. The mRNA m6A methylation in boar testicular development still needs to be investigated. RESULTS: Using the MeRIP-seq technique, we identify and profile m6A modification in boar testes between piglets and adults. The results showed 7783 distinct m6A peaks in piglets and 6590 distinct m6A peaks in adults, with 2,471 peaks shared between the two groups. Enrichment of GO and KEGG analysis reveal dynamic m6A methylation in various biological processes and signalling pathways. Meanwhile, we conjointly analyzed differentially methylated and expressed genes in boar testes before and after sexual maturity, and reproductive related genes (TLE4, TSSK3, TSSK6, C11ORF94, PATZ1, PHLPP1 and PAQR7) were identified. Functional enrichment analysis showed that differential genes are associated with important biological functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. CONCLUSION: The results demonstrate that m6A methylation, differential expression and the related signalling pathways are crucial for boar testicular development. These results suggest a role for m6A modification in boar testicular development and provided a resource for future studies on m6A function in boar testicular development.


Asunto(s)
Adenosina , Maduración Sexual , Testículo , Animales , Masculino , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Adenosina/análogos & derivados , Adenosina/metabolismo , Porcinos/genética , Maduración Sexual/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metilación , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Perfilación de la Expresión Génica
6.
Mol Hum Reprod ; 29(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37471586

RESUMEN

Circular RNAs (circRNAs), which exert critical functions in the regulation of transcriptional and post-transcriptional gene expression, are found in mammalian cells but their functions in mammalian preimplantation embryo development remain poorly understood. Here, we showed that circKDM5B mediated miRNA-128 (miR-128) to regulate porcine early embryo development. We screened circRNAs potentially expressed in porcine embryos through an integrated analysis of sequencing data from mouse and human embryos, as well as porcine oocytes. An authentic circRNA originating from histone demethylase KDM5B (referred to as circKDM5B) was abundantly expressed in porcine embryos. Functional studies revealed that circKDM5B knockdown not only significantly reduced blastocyst formation but also decreased the number of total cells and trophectoderm (TE) cells. Moreover, the knockdown of circKDM5B resulted in the disturbance of tight junction assembly and impaired paracellular sealing within the TE epithelium. Mechanistically, miR-128 inhibitor injection could rescue the early development of circKDM5B knockdown embryos. Taken together, the findings revealed that circKDM5B functions as a miR-128 sponge, thereby facilitating early embryonic development in pigs through the modulation of gene expression linked to tight junction assembly.


Asunto(s)
Blastocisto , MicroARNs , ARN Circular , Animales , Humanos , Ratones , Blastocisto/metabolismo , Embrión de Mamíferos , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Porcinos , Histona Demetilasas con Dominio de Jumonji/genética
7.
Theriogenology ; 206: 123-132, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37209432

RESUMEN

Emamectin benzoate (EB) is a widely used insecticide that can damage the central nervous and immune systems. EB exposure significantly reduced the number of eggs laid, hatching rate, and developmental rate of lower organisms such as nematodes. However, effects of EB exposure on the maturation of higher animals such as porcine oocytes remains unknown. Here we reported that EB exposure severely impaired porcine oocyte maturation. EB exposure with 200 µM prevented cumulus expansion and reduced the rates of first polar body (pb1) extrusion, cleavage and blastocyst after parthenogenetic activation. Moreover, EB exposure disrupted spindle organization, chromosome alignment, and polymerization of microfilaments, but also apparently decreased the levels of acetylated α-tubulin (Ac-Tub) in oocytes. In addition, EB exposure perturbed mitochondria distribution and increased levels of reactive oxygen species (ROS), but did not affect the distribution of cortical granules (CGs) in oocytes. Excessive ROS caused DNA damage accumulation and induced early apoptosis of oocytes. EB exposure led to the abnormal expression of cumulus expansion and apoptosis-associated genes. Altogether, these results demonstrate that EB exposure impaired nuclear and cytoplasmic maturation of porcine oocytes probably through oxidative stress and early apoptosis.


Asunto(s)
Oocitos , Oogénesis , Animales , Porcinos , Especies Reactivas de Oxígeno/metabolismo , Oocitos/fisiología , Ivermectina/farmacología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos
8.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982641

RESUMEN

3-methylcholanthrene (3-MC) is a highly toxic environmental pollutant that impairs animal health. 3-MC exposure can cause abnormal spermatogenesis and ovarian dysfunction. However, the effects of 3-MC exposure on oocyte maturation and embryo development remain unclear. This study revealed the toxic effects of 3-MC exposure on oocyte maturation and embryo development. 3-MC with different concentrations of 0, 25, 50, and 100 µM was applied for in vitro maturation of porcine oocytes. The results showed that 100 µM 3-MC significantly inhibited cumulus expansion and the first polar body extrusion. The rates of cleavage and blastocyst of embryos derived from 3-MC-exposed oocytes were significantly lower than those in the control group. Additionally, the rates of spindle abnormalities and chromosomal misalignments were higher than those in the control group. Furthermore, 3-MC exposure not only decreased the levels of mitochondria, cortical granules (CGs), and acetylated α-Tubulin, but also increased the levels of reactive oxygen species (ROS), DNA damage, and apoptosis. The expression of cumulus expansion and apoptosis-related genes was abnormal in 3-MC-exposed oocytes. In conclusion, 3-MC exposure disrupted the nuclear and cytoplasmic maturation of porcine oocytes through oxidative stress.


Asunto(s)
Metilcolantreno , Oogénesis , Animales , Porcinos , Metilcolantreno/farmacología , Oocitos/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Desarrollo Embrionario , Técnicas de Maduración In Vitro de los Oocitos
9.
Theriogenology ; 196: 88-96, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36401936

RESUMEN

Sperm cryopreservation maintains the diversities of porcine genetic resources and improves utilization efficiency of boar semen in artificial insemination practices. Freezability of boar semen presents remarkable differences among individuals. However, metabolic markers for boar semen freezability in both sperm and seminal plasma largely remain unknown. The present study thus aims to determine differences in metabolites of sperm and seminal plasma between poor (PF) and good (GF) freezability semen from a Chinese native pig and screen potential markers for semen freezability. A total of 72,048 metabolites in sperm and 66,551 metabolites in seminal plasma were identified by liquid chromatography-mass spectrometry, respectively. The proportion of lipid molecules among all metabolites in both sperm and seminal plasma was the maximum regardless of negative or positive mode. Furthermore, we identified 21 differentially expressed metabolites (DEMs) in sperm and 185 DEMs in seminal plasma between PF and GF group. Additionally, clustering analysis showed that DEMs in sperm and seminal plasma exhibited significant changes between PF and GF group. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEMs in sperm were mainly enriched in metabolic pathways of amino acids and caffeine. DEMs in seminal plasma were associated with AMPK and cAMP signaling pathways. Taken together, these results demonstrate that sperm and seminal plasma of native pigs present differential metabolome between PF and GF semen.


Asunto(s)
Semen , Masculino , Porcinos , Animales
10.
Animals (Basel) ; 12(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36290133

RESUMEN

Circular RNA (circRNA) is expressed in cells and tissues of several species. However, the expression of circRNAs in the blood of Jianghuai buffaloes during early pregnancy has not been reported. In this study, we identified the DECs in the blood of Jianghuai buffaloes and annotated the functions of these DECs. The results showed that there were 890 DECs between the pregnant and non-pregnant groups, of which more than 80% were exon-derived circRNAs, including 323 up-regulated circRNAs and 567 down-regulated circRNAs. Enrichment analysis revealed that DECs were mainly enriched in the epidermal growth factor receptor-signaling pathway important for embryonic development and pregnancy maintenance. In addition, most DECs have multiple miRNA targets, suggesting that these DECs have the potential to function as miRNA sponges. In conclusion, several DECs are present between pregnant and non-pregnant Jianghuai buffaloes, and these DECs are associated with embryo implantation and pregnancy establishment.

11.
Animals (Basel) ; 12(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077946

RESUMEN

SET domain-containing 2 (SETD2) is a methyltransferase that can catalyze the di- and tri-methylation of lysine 36 on histone H3 (H3K36me2/me3). SETD2 frequently mediates H3K36me3 modification to regulate both oocyte maturation and preimplantation embryonic development in mice. However, the specific substrate and function of SETD2 in porcine early embryonic development are still unclear. In this study, SETD2 preferentially catalyzed H3K36me3 to regulate porcine early embryonic development. SETD2 mRNA is dynamically expressed during early embryonic development. Functional studies using an RNA interference (RNAi) approach revealed that the expression levels of SETD2 mRNA were effectively knocked down by siRNA microinjection. Immunofluorescence analysis indicated that SETD2 knockdown (KD) did not affect H3K36me2 modification but significantly reduced H3K36me3 levels, suggesting a preferential H3K36me3 recognition of SETD2 in porcine embryos. Furthermore, SETD2 KD significantly reduced blastocyst rate and disrupted allocation between inner cell mass (ICM) and trophectoderm (TE) lineage. The expression levels of key genes important for specification of the first two lineages apparently decreased in SETD2 KD blastocysts. SETD2 KD markedly increased the apoptotic percentage of cells within embryos and altered the expression of pro- and anti-apoptotic genes. Therefore, our data indicate that SETD2 is essential for porcine early embryonic development.

12.
Genes (Basel) ; 13(9)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36140814

RESUMEN

Heat stress (HS) commonly causes boar infertility and economic loss in the swine industry. The heat tolerance of boar semen presents obvious differences among individuals. However, whether heat stress affects motion characteristics and the metabolome profile in boar sperm remains unclear. In this study, the kinetic features of sperm from HS and non-HS (NHS) groups were detected by computer-assisted sperm analysis, and metabolomic profiling was performed by liquid chromatography−mass spectrometry. The results showed that heat stress significantly reduced sperm motility, average path distance (APD), straight-line velocity (VSL), straightness (STR), and linearity (LIN) (p < 0.05). A total of 528 and 194 metabolites in sperm were identified in the positive and negative ion modes, respectively. Lipids and lipid-like molecules, and organic acids and derivatives were major metabolic classes in the two modes. Furthermore, we separately identified 163 and 171 differential metabolites in the two modes between HS and NHS groups. Clustering analysis further revealed significant metabolic changes in sperm after heat stress. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differential metabolites in the two modes were enriched in glycerophospholipid, choline, and alanine, aspartate, and glutamate and lysine metabolism. Taken together, these results demonstrate that heat stress can alter the motion characteristics and metabolomic profiles of boar sperm.


Asunto(s)
Trastornos de Estrés por Calor , Motilidad Espermática , Alanina/metabolismo , Alanina/farmacología , Animales , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Colina/metabolismo , Colina/farmacología , Glutamatos/metabolismo , Glutamatos/farmacología , Glicerofosfolípidos/metabolismo , Glicerofosfolípidos/farmacología , Respuesta al Choque Térmico , Lípidos , Lisina/metabolismo , Masculino , Semen , Espermatozoides/metabolismo , Porcinos
13.
Animals (Basel) ; 12(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35405822

RESUMEN

Dimethoate (DT) is an environmental pollutant widely used in agricultural fields and home gardens. Studies have shown that exposure to DT causes reproductive defects in both male and female animals. However, the effects of DT exposure on oocyte maturation and the approach to counteract it are not yet known. Here, we investigated the toxicity of DT on porcine oocyte maturation and the protective effects of melatonin (MT) on DT-exposed oocytes. DT exposure with 1.5 mM partially inhibited cumulus cell expansion and significantly reduced the rate of first polar body extrusion (pb1) during oocyte maturation. Parthenogenetically activated embryos derived from DT-exposed oocytes could not develop to the 2-cell and blastocyst stage. Furthermore, DT exposure led to a significant increase in the rates of misaligned chromosomes, disorganized spindles, and abnormal actin assembly. DT exposure severely disrupted the distribution patterns of mitochondria in oocytes but did not change the subcellular localizations of cortical granules. Importantly, MT supplementation rescued the meiotic and developmental defects of DT-exposed oocytes through repressing the generation of excessive reactive oxygen species (ROS) and autophagy, and DNA damage accumulation. These results demonstrate that melatonin protects against meiotic defects induced by DT during porcine oocyte maturation.

14.
Animals (Basel) ; 12(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35268181

RESUMEN

Zygotic genome activation (ZGA) plays an essential role in early embryonic development. Vitrification is a common assisted reproductive technology that frequently reduces the developmental competence of embryos. However, the effect of vitrification on porcine ZGA and gene expression during ZGA remains largely unclear. Here, we found that vitrification of pronuclear zygotes derived from parthenogenetic activation (PA) and in vitro fertilization (IVF) resulted in a significant reduction in the rates of 2-cell, 4-cell, and blastocysts, but did not affect the quality of blastocysts. Functional research revealed that RNA polymerase II Inhibitor (α-amanitin) treatment significantly reduced global transcriptional activity and developmental efficiency of both 4-cell and 8-cell embryos, implying an essential role of ZGA in porcine early embryonic development. Furthermore, vitrification did not affect the synthesis of nascent mRNA of 2-cell embryos, but significantly inhibited global transcriptional activity of both 4-cell and 8-cell embryos, suggesting an impaired effect of vitrification on porcine ZGA. Correspondingly, the single-cell analysis showed that vitrification caused the downregulation or upregulation expression of maternal genes in 4-cell embryos, also significantly decreased the expression of zygotic genes. Taken together, these results indicated that vitrification of pronuclear zygotes impairs porcine zygotic genome activation.

15.
Theriogenology ; 179: 60-68, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34839230

RESUMEN

Paraquat (PQ) is a heterocyclic pesticide that not only damages the testicular development and reduces the quality of semen, but also disturbs the secretion of hormones in the reproductive system. However, the effects of PQ on oocyte maturation and its toxic mechanism have not been yet fully clarified. Here we showed that PQ exposure could have toxic effects on porcine oocyte maturation. PQ exposure with 100 µM inhibited cumulus cell expansion and significantly reduced the rate of first polar body extrusion during oocyte maturation. PQ-exposed oocytes could not develop to the 2-cell and blastocyst stage. PQ exposure with 100 µM significantly increased abnormal spindle rate (65.2% ± 1.0%) and misaligned chromosome rate (63.2% ± 3.4%) compared to the control group (38.3% ± 1.0% and 38.4% ± 1.0%, respectively; P < 0.05). F-actin also exhibited reduced distribution in PQ-exposed oocytes (10.3% ± 1.0%) compared to the control group (14.4% ± 1.0%, P < 0.05). In addition, PQ exposure reduced the active mitochondria levels, but apparently increased the reactive oxygen species (ROS), rH2AX, and LC3 (autophagy marker) levels. qPCR analyses showed that PQ exposure caused the aberrant expression of genes associated with cumulus cell expansion, but did not affect the expression of apoptosis-related genes. Taken together, these results indicate that PQ exposure impaired oocyte nuclear and cytoplasmic maturation probably through oxidative stress.


Asunto(s)
Oogénesis , Paraquat , Animales , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/metabolismo , Estrés Oxidativo , Paraquat/metabolismo , Paraquat/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Porcinos
16.
Zool Res ; 42(5): 562-573, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34355875

RESUMEN

Inositol requiring mutant 80 (INO80) is a chromatin remodeler that regulates pluripotency maintenance of embryonic stem cells and reprogramming of somatic cells into pluripotent stem cells. However, the roles and mechanisms of INO80 in porcine pre-implantation embryonic development remain largely unknown. Here, we show that INO80 modulates trophectoderm epithelium permeability to promote porcine blastocyst development. The INO80 protein is highly expressed in the nuclei during morula-to-blastocyst transition. Functional studies revealed that RNA interference (RNAi)-mediated knockdown of INO80 severely blocks blastocyst formation and disrupts lineage allocation between the inner cell mass and trophectoderm. Mechanistically, single-embryo RNA sequencing revealed that INO80 regulates multiple genes, which are important for lineage specification, tight junction assembly, and fluid accumulation. Consistent with the altered expression of key genes required for tight junction assembly, a permeability assay showed that paracellular sealing is defective in the trophectoderm epithelium of INO80 knockdown blastocysts. Importantly, aggregation of 8-cell embryos from the control and INO80 knockdown groups restores blastocyst development and lineage allocation via direct complementation of the defective trophectoderm epithelium. Taken together, these results demonstrate that INO80 promotes blastocyst development by regulating the expression of key genes required for lineage specification, tight junction assembly, and fluid accumulation.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Blastocisto/fisiología , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Mórula/fisiología , Porcinos , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Proteínas de Unión al ADN/genética , Técnicas de Cultivo de Embriones/veterinaria , Fertilización In Vitro , Regulación de la Expresión Génica/fisiología , Oocitos/fisiología , Permeabilidad
17.
Animals (Basel) ; 11(5)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067577

RESUMEN

Testicular development is critical for male animals' reproduction and is tightly regulated by epigenetic factors. Circular RNAs (circRNAs) were recently identified in the testes of humans and bulls. However, the expression profile of circRNAs and their potential biological functions in boar testicular development remain unclear. We identified 34,521 and 31,803 circRNAs in piglet (30 d) and adult (210 d) boar testes by high-throughput sequencing, respectively. Bioinformatics analysis revealed that these circRNAs are widely distributed on autosomes and sex chromosomes. Some of the host genes can generate multiple circRNAs. A total of 2326 differentially expressed circRNAs (DECs) derived from 1526 host genes was found in testicular development, of which 1003 circRNAs were up-regulated in adult boar testes and 1323 circRNAs were down-regulated. Furthermore, gene ontology analysis of host genes of DECs revealed that these circRNAs are mainly involved in regulating spermatogenesis, cilia motility, and hormone biosynthesis. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the DECs are markedly enriched to stem cell pluripotency regulation, tight junctions, adhesion junctions, and cAMP signaling pathway. These results indicate that circRNAs are abundantly expressed in boar testes and exhibit dynamic changes during testicular development.

18.
Front Cell Dev Biol ; 9: 678282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150772

RESUMEN

Coactivator-associated arginine methyltransferase 1 (CARM1) is involved in both establishment of first pluripotent lineage and pluripotency maintenance of embryonic stem cells (ESCs) in mice. However, the histone substrates and role of CARM1 in early embryonic development remain largely unknown. Here, we show that CARM1 specifically catalyzes H3R26me2 to promote porcine blastocyst formation. The putative histone substrates of CARM1, including H3R2me2, H3R17me2, and H3R26me2, are present in pig early embryos. The changes of CARM1 mRNA during early embryogenesis parallel that of H3R26me2. Functional studies using a combinational approach of chemical inhibition and RNA interference (RNAi) showed that catalytic activity inhibition of CARM1 protein or knockdown (KD) of CARM1 mRNA did not alter the levels of both H3R2me2 and H3R17me2, but significantly reduced H3R26me2 levels in porcine embryos. Furthermore, CARM1 inhibition or KD did not affect embryo development to the 2-cell, 4-cell, 8-cell, and morula stages, but severely compromised blastocyst development. CARM1 knocked down embryos that developed to the blastocyst stage had fewer total cells, inner cell mass (ICM), and trophectoderm (TE) cells. Mechanistically, single embryo RNA-sequencing analysis revealed that CARM1 KD altered the transcriptome characterized by downregulation of key genes associated with Hippo and PI3K-AKT signaling pathways. Taken together, these results demonstrate that CARM1 specifically catalyzes H3R26me2 in porcine embryos and participates in blastocyst development.

19.
Zygote ; 29(6): 417-426, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33890562

RESUMEN

N6-Methyladenosine (m6A) regulates oocyte-to-embryo transition and the reprogramming of somatic cells into induced pluripotent stem cells. However, the role of m6A methylation in porcine early embryonic development and its reprogramming characteristics in somatic cell nuclear transfer (SCNT) embryos are yet to be known. Here, we showed that m6A methylation was essential for normal early embryonic development and its aberrant reprogramming in SCNT embryos. We identified a persistent occurrence of m6A methylation in embryos between 1-cell to blastocyst stages and m6A levels abruptly increased during the morula-to-blastocyst transition. Cycloleucine (methylation inhibitor, 20 mM) treatment efficiently reduced m6A levels, significantly decreased the rates of 4-cell embryos and blastocysts, and disrupted normal lineage allocation. Moreover, cycloleucine treatment also led to higher levels in both apoptosis and autophagy in blastocysts. Furthermore, m6A levels in SCNT embryos at the 4-cell and 8-cell stages were significantly lower than that in parthenogenetic activation (PA) embryos, suggesting an abnormal reprogramming of m6A methylation in SCNT embryos. Correspondingly, expression levels of m6A writers (METTL3 and METTL14) and eraser (FTO) were apparently higher in SCNT 8-cell embryos compared with their PA counterparts. Taken together, these results indicated that aberrant nuclear transfer-mediated reprogramming of m6A methylation was involved in regulating porcine early embryonic development.


Asunto(s)
Histonas , ARN , Adenosina/análogos & derivados , Animales , Blastocisto , Embrión de Mamíferos , Desarrollo Embrionario , Histonas/genética , Técnicas de Transferencia Nuclear , Porcinos
20.
Front Vet Sci ; 8: 609180, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718466

RESUMEN

Sperm cryopreservation is a powerful tool for the livestock breeding program. Several technical attempts have been made to enhance the efficiency of spermatozoa cryopreservation in different farm animal species. However, it is well-recognized that mammalian spermatozoa are susceptible to cryo-injury caused by cryopreservation processes. Moreover, the factors leading to cryo-injuries are complicated, and the cryo-damage mechanism has not been methodically explained until now, which directly influences the quality of frozen-thawed spermatozoa. Currently, the various OMICS technologies in sperm cryo-biology have been conducted, particularly proteomics and transcriptomics studies. It has contributed while exploring the molecular alterations caused by cryopreservation, identification of various freezability markers and specific proteins that could be added to semen diluents before cryopreservation to improve sperm cryo-survival. Therefore, understanding the cryo-injury mechanism of spermatozoa is essential for the optimization of current cryopreservation processes. Recently, the application of newly-emerged proteomics and transcriptomics technologies to study the effects of cryopreservation on sperm is becoming a hotspot. This review detailed an updated overview of OMICS elements involved in sperm cryo-tolerance and freeze-thawed quality. While also detailed a mechanism of sperm cryo-injury and utilizing OMICS technology that assesses the sperm freezability potential biomarkers as well as the accurate classification between the excellent and poor freezer breeding candidate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...